我想制作12个变量的多面图,但在研究对象(P)之间进行划分,同时指定每个变量的最小和最大y值。
Resp_L <- structure(list(P = c("Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat22", "Pat22", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat26", "Pat26", "Pat28", "Pat28", "Pat28", "Pat28", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat31", "Pat31",
"Pat31", "Pat31", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat43", "Pat43",
"Pat43", "Pat43", "Pat43", "Pat44", "Pat44", "Pat44", "Pat44",
"Pat44", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat48", "Pat48", "Pat48",
"Pat48", "Pat48", "Pat48", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat22", "Pat22", "Pat22", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat26", "Pat26", "Pat26", "Pat28", "Pat28", "Pat28", "Pat28",
"Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat31",
"Pat31", "Pat31", "Pat31", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat43",
"Pat43", "Pat43", "Pat43", "Pat43", "Pat44", "Pat44", "Pat44",
"Pat44", "Pat44", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat48", "Pat48",
"Pat48", "Pat48", "Pat48", "Pat48", "Pat22", "Pat22", "Pat22",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat26", "Pat26", "Pat26",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat28", "Pat28", "Pat28",
"Pat28", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat31", "Pat31", "Pat31", "Pat31", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat38",
"Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat43", "Pat43", "Pat43", "Pat43", "Pat43", "Pat44", "Pat44",
"Pat44", "Pat44", "Pat44", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat48",
"Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat22", "Pat22",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat26", "Pat26",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat28", "Pat28",
"Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43", "Pat44",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat22",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat26",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat28",
"Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48",
"Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22", "Pat22",
"Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26", "Pat26",
"Pat28", "Pat28", "Pat28", "Pat28", "Pat3", "Pat3", "Pat3", "Pat3",
"Pat3", "Pat3", "Pat3", "Pat31", "Pat31", "Pat31", "Pat31", "Pat33",
"Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33", "Pat33",
"Pat33", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38", "Pat38",
"Pat38", "Pat38", "Pat43", "Pat43", "Pat43", "Pat43", "Pat43",
"Pat44", "Pat44", "Pat44", "Pat44", "Pat44", "Pat45", "Pat45",
"Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45", "Pat45",
"Pat45", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48", "Pat48"
), X = c(1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L, 13L, 15L,
18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L, 20L, 5L,
7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L, 3L, 5L,
7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L,
9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L, 2L,
4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L,
9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L,
18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L,
24L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L,
2L, 4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L,
39L, 2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L,
3L, 7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L,
14L, 16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L,
19L, 22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L,
13L, 15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L,
35L, 37L, 39L, 2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L,
14L, 16L, 3L, 7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L,
5L, 10L, 14L, 16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L,
15L, 17L, 19L, 22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L,
3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L,
15L, 17L, 33L, 35L, 37L, 39L, 2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L,
5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L,
5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L,
5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L,
19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L,
10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L, 2L, 4L, 6L, 8L, 12L,
14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L, 13L, 15L, 18L,
20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L, 20L, 5L, 7L,
9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L, 3L, 5L, 7L,
11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L,
13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L, 2L, 4L,
6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L,
13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L,
20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L,
3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L,
4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L,
2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L,
7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L,
16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L,
22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L,
15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L,
37L, 39L, 2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L,
16L, 3L, 7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L,
10L, 14L, 16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L,
17L, 19L, 22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L,
5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L,
17L, 33L, 35L, 37L, 39L, 2L, 4L, 6L, 8L, 12L, 14L, 1L, 3L, 5L,
7L, 11L, 14L, 16L, 3L, 7L, 9L, 13L, 15L, 18L, 20L, 1L, 3L, 5L,
9L, 1L, 5L, 10L, 14L, 16L, 18L, 20L, 5L, 7L, 9L, 13L, 3L, 5L,
7L, 13L, 15L, 17L, 19L, 22L, 24L, 3L, 5L, 7L, 11L, 13L, 17L,
19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L, 13L, 5L, 7L,
10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L, 2L, 4L, 6L, 8L, 12L,
14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L, 13L, 15L, 18L,
20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L, 20L, 5L, 7L,
9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L, 3L, 5L, 7L,
11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L, 4L, 6L, 9L,
13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L, 2L, 4L,
6L, 8L, 12L, 14L, 1L, 3L, 5L, 7L, 11L, 14L, 16L, 3L, 7L, 9L,
13L, 15L, 18L, 20L, 1L, 3L, 5L, 9L, 1L, 5L, 10L, 14L, 16L, 18L,
20L, 5L, 7L, 9L, 13L, 3L, 5L, 7L, 13L, 15L, 17L, 19L, 22L, 24L,
3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 3L, 5L, 8L, 13L, 15L, 2L,
4L, 6L, 9L, 13L, 5L, 7L, 10L, 12L, 15L, 17L, 33L, 35L, 37L, 39L,
2L, 4L, 6L, 8L, 12L, 14L), variable = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L), .Label = c("PCT_L",
"L_IL.2", "L_IL.5", "L_IL.6", "L_IL.8", "L_IL.10", "L_IL.13",
"L_IL12p70", "L_IL1ß", "L_TNF", "L_IFN.y", "L_IL17A"), class = "factor"),
value = c(0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.02, 0.04, 0.03,
0.02, 0.05, 0.02, 0.02, 0.02, 0.03, 0.03, 0.03, 0.04, 0.04,
0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.04, 0.02, 0.03,
0.1, 0.07, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.04, 0.03,
0.02, 0.02, 0.02, 0.05, 0.03, 0.03, 0.03, 0.03, 0.05, 0.07,
0.06, 0.06, 0.05, 0.04, 0.05, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.03, 0.03, 0.03, 8.3, 0, 2.1, 6.3, 1.4, 0, 3.1, 0,
2.1, 2.4, 0, 4, 5.9, 4.5, 3.3, 0, 0, 3.8, 0, 0, 0, 0, 0.2,
4, 0.6, 0, 4.2, 4.3, 0, 0.1, 0, 0, 0, 0.3, 0, 0, 0, 0, 2.9,
7, 3.6, 1.9, 1.8, 3.1, 3.7, 0, 0, 5, 0.8, 1, 0, 0, 0, 0,
0, 1.4, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 7.4, 0, 1.2, 0, 0, 2.7,
2.2, 0, 0, 1.7, 1.8, 0, 0, 0, 0.8, 0, 1.8, 2.3, 0, 0, 0.1,
0, 0.6, 0, 2, 0, 0, 0, 0, 0.2, 1.4, 0, 0, 0.5, 0, 0, 0, 0,
0, 0.2, 0.6, 0.4, 0, 0, 0, 0, 0.8, 0.1, 0, 1.2, 1.7, 0.6,
0, 0, 0, 0, 0, 0.1, 0, 0.5, 0.3, 0, 0, 0.8, 0.4, 0, 0, 0,
1.2, 0, 0.5, 0.7, 0.7, 0.4, 0.3, 0, 0, 1.5, 1.9, 337.7, 654.1,
8203.4, 918.5, 197.3, 53.3, 97.9, 15459.4, 75222.3, 144408.5,
543.9, 394.8, 132.9, 53, 3584.3, 1153.8, 5156, 1236.7, 224,
9941.9, 1926.1, 1130.2, 312.3, 398, 43.1, 1251.4, 156618.2,
3113.8, 900.7, 163.4, 3108.6, 5597.3, 2994.8, 1254.1, 391.5,
232.4, 41.7, 29.8, 9856.9, 217047.1, 11579.4, 6997.8, 1870.1,
565.2, 75.7, 34.6, 2348.1, 7799.7, 789.9, 172.4, 240.2, 2866.3,
20830.1, 10948.4, 335.5, 105.3, 2322.6, 25793, 4517.1, 1599.8,
292.6, 15652, 1037.1, 1087.4, 107.9, 35.2, 2346.9, 8208.4,
14472.7, 15839.8, 3376.2, 621.4, 166.8, 861.5, 8276.1, 2747,
567.9, 310.6, 288.5, 1516.8, 3846, 6574.5, 1291.1, 601.2,
586.8, 148.7, 1269.1, 1879.1, 1826, 1991.9, 160.8, 5399.1,
5104.7, 4454.5, 2450.9, 2772, 3016.2, 2224.6, 4120.3, 935.4,
393.9, 744.3, 327.6, 1823.1, 2387, 2238.5, 1077, 768.1, 191.4,
143.6, 917.5, 1105.6, 911.3, 1447.5, 908.7, 676.3, 309.8,
3843, 1767.8, 614.1, 1059.1, 235.3, 925.5, 410.8, 1552.6,
1726.9, 691, 716.3, 298.6, 5942, 2078.9, 1004.5, 559.1, 11111.4,
439.8, 843.2, 879.3, 349.2, 435.9, 1123.1, 776.2, 2126.2,
2801.6, 748.3, 4.8, 5.7, 14.9, 9.8, 1.6, 0.6, 4.6, 1.5, 25.7,
30.6, 10.8, 10.9, 4.8, 0.9, 3.8, 2.1, 4.6, 7.8, 3.5, 6.6,
2.1, 4.7, 4.5, 7.1, 1.3, 13.1, 72.2, 22.3, 5.6, 24.9, 3.1,
9, 16.7, 12.4, 3.3, 2, 0, 0, 27.9, 40.4, 25.5, 21.7, 9.8,
6.6, 0, 0, 11.5, 6.3, 10.2, 2.2, 2.1, 8.6, 36.7, 9.9, 2.1,
0, 4.9, 44.8, 25.6, 20.7, 5.4, 13.6, 16.6, 12.8, 8.9, 7.8,
8.2, 18.1, 17.1, 31, 24.8, 3.8, 2.3, 0, 1, 0.1, 0.9, 0, 0,
0, 1.7, 4.3, 2.5, 0, 0, 1.5, 4, 0, 0, 0, 0.6, 0.3, 0, 0,
0.2, 2.9, 0.4, 0, 0, 0, 0, 0, 0.1, 1, 0, 0.8, 0.3, 0, 0.4,
0.4, 0, 0, 1.6, 0, 0.8, 0, 0, 0, 0, 0, 0.7, 0, 0, 0.7, 0,
0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2.1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.1, 0, 0, 0, 0, 1.1, 0,
0, 0, 0, 0, 0, 10, 0, 0, 3.4, 0, 0, 0.9, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2.6, 0, 1.9, 6.5, 2.8, 7, 0, 0, 4.1, 4.9, 0, 2.9,
0, 2.4, 0, 0, 5.1, 0, 0, 0, 0, 0, 0.9, 0, 3.3, 0, 0, 0, 2.1,
0, 0, 0, 1.9, 0, 0, 9, 6, 0, 0, 0, 23, 4, 0, 2, 0, 0, 0,
2, 12, 7, 3, 0, 0, 0, 0, 1, 5, 53, 0, 7, 3, 1, 0, 0, 1, 1,
2, 0, 0, 0, 0, 1, 6, 0, 0, 2, 3, 0, 3, 0, 5, 9, 2, 2, 7,
5, 1, 2, 3, 0, 1, 1, 4, 1, 2, 5, 15, 4, 4, 9, 5, 7, 4, 2,
0, 0, 0, 0, 6.3, 2.2, 4.3, 2.5, 21.2, 1.7, 18.2, 3.9, 0,
3.5, 0, 0, 3.2, 0, 2.2, 0.7, 0, 0, 0, 1.4, 9.8, 0, 0, 0,
0, 0, 0, 0, 0, 0.6, 1.4, 0, 0, 0, 0, 5.2, 6.8, 1.6, 6.1,
2.5, 2.6, 0, 0, 0, 4.9, 4.4, 2.5, 3.4, 0, 7.6, 0.7, 3.3,
2.2, 3.2, 1.3, 3.2, 0, 0, 0, 0, 3.4, 0, 2.4, 2.3, 0, 1.5,
0, 7.6, 0.3, 0, 0, 0, 2.1, 0, 0, 0, 0, 0, 0, 0, 4.4, 0, 0,
9.1, 4.9, 0, 8.1, 0, 0, 0, 0, 0, 3.4, 0, 5.8, 12.9, 10.2,
1.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.4, 5.1, 0, 0, 7.2, 9.7,
0, 0, 0.5, 6.2, 6, 0, 4.9, 2, 0, 6.9, 0, 2, 0, 0, 1.2, 0,
8.2, 8.8, 4.7, 13.4, 10.4, 0, 9.8, 8, 0, 8.9, 1.9, 7.3, 0,
0, 0, 0, 4.1, 0, 0, 0, 0, 0, 0, 0, 0, 3.2, 0, 0, 0, 13.3,
0, 0, 0, 0, 0, 8, 0, 0, 3.1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2.6, 0, 7.2, 2.2, 4.2, 0, 0, 0, 0, 0, 3.9, 0, 4.6,
0, 3.2, 0, 0, 0, 14.9, 0, 3.6, 0, 0, 10.4, 18.4, 2.5, 2.2,
0, 0, 0, 0, 0, 0)), row.names = c(31L, 32L, 33L, 34L, 35L,
36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L,
49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 63L, 64L,
65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L,
78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L,
91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L,
103L, 104L, 105L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L,
144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L,
155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 168L,
169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L,
180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L,
191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L,
202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L, 241L, 242L,
243L, 244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253L,
254L, 255L, 256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L,
265L, 266L, 267L, 268L, 269L, 273L, 274L, 275L, 276L, 277L, 278L,
279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L, 289L,
290L, 291L, 292L, 293L, 294L, 295L, 296L, 297L, 298L, 299L, 300L,
301L, 302L, 303L, 304L, 305L, 306L, 307L, 308L, 309L, 310L, 311L,
312L, 313L, 314L, 315L, 346L, 347L, 348L, 349L, 350L, 351L, 352L,
353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L, 362L, 363L,
364L, 365L, 366L, 367L, 368L, 369L, 370L, 371L, 372L, 373L, 374L,
378L, 379L, 380L, 381L, 382L, 383L, 384L, 385L, 386L, 387L, 388L,
389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L, 399L,
400L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L, 409L, 410L,
411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L, 419L, 420L, 451L,
452L, 453L, 454L, 455L, 456L, 457L, 458L, 459L, 460L, 461L, 462L,
463L, 464L, 465L, 466L, 467L, 468L, 469L, 470L, 471L, 472L, 473L,
474L, 475L, 476L, 477L, 478L, 479L, 483L, 484L, 485L, 486L, 487L,
488L, 489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 498L,
499L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L, 509L,
510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L, 520L,
521L, 522L, 523L, 524L, 525L, 556L, 557L, 558L, 559L, 560L, 561L,
562L, 563L, 564L, 565L, 566L, 567L, 568L, 569L, 570L, 571L, 572L,
573L, 574L, 575L, 576L, 577L, 578L, 579L, 580L, 581L, 582L, 583L,
584L, 588L, 589L, 590L, 591L, 592L, 593L, 594L, 595L, 596L, 597L,
598L, 599L, 600L, 601L, 602L, 603L, 604L, 605L, 606L, 607L, 608L,
609L, 610L, 611L, 612L, 613L, 614L, 615L, 616L, 617L, 618L, 619L,
620L, 621L, 622L, 623L, 624L, 625L, 626L, 627L, 628L, 629L, 630L,
661L, 662L, 663L, 664L, 665L, 666L, 667L, 668L, 669L, 670L, 671L,
672L, 673L, 674L, 675L, 676L, 677L, 678L, 679L, 680L, 681L, 682L,
683L, 684L, 685L, 686L, 687L, 688L, 689L, 693L, 694L, 695L, 696L,
697L, 698L, 699L, 700L, 701L, 702L, 703L, 704L, 705L, 706L, 707L,
708L, 709L, 710L, 711L, 712L, 713L, 714L, 715L, 716L, 717L, 718L,
719L, 720L, 721L, 722L, 723L, 724L, 725L, 726L, 727L, 728L, 729L,
730L, 731L, 732L, 733L, 734L, 735L, 766L, 767L, 768L, 769L, 770L,
771L, 772L, 773L, 774L, 775L, 776L, 777L, 778L, 779L, 780L, 781L,
782L, 783L, 784L, 785L, 786L, 787L, 788L, 789L, 790L, 791L, 792L,
793L, 794L, 798L, 799L, 800L, 801L, 802L, 803L, 804L, 805L, 806L,
807L, 808L, 809L, 810L, 811L, 812L, 813L, 814L, 815L, 816L, 817L,
818L, 819L, 820L, 821L, 822L, 823L, 824L, 825L, 826L, 827L, 828L,
829L, 830L, 831L, 832L, 833L, 834L, 835L, 836L, 837L, 838L, 839L,
840L, 871L, 872L, 873L, 874L, 875L, 876L, 877L, 878L, 879L, 880L,
881L, 882L, 883L, 884L, 885L, 886L, 887L, 888L, 889L, 890L, 891L,
892L, 893L, 894L, 895L, 896L, 897L, 898L, 899L, 903L, 904L, 905L,
906L, 907L, 908L, 909L, 910L, 911L, 912L, 913L, 914L, 915L, 916L,
917L, 918L, 919L, 920L, 921L, 922L, 923L, 924L, 925L, 926L, 927L,
928L, 929L, 930L, 931L, 932L, 933L, 934L, 935L, 936L, 937L, 938L,
939L, 940L, 941L, 942L, 943L, 944L, 945L, 976L, 977L, 978L, 979L,
980L, 981L, 982L, 983L, 984L, 985L, 986L, 987L, 988L, 989L, 990L,
991L, 992L, 993L, 994L, 995L, 996L, 997L, 998L, 999L, 1000L,
1001L, 1002L, 1003L, 1004L, 1008L, 1009L, 1010L, 1011L, 1012L,
1013L, 1014L, 1015L, 1016L, 1017L, 1018L, 1019L, 1020L, 1021L,
1022L, 1023L, 1024L, 1025L, 1026L, 1027L, 1028L, 1029L, 1030L,
1031L, 1032L, 1033L, 1034L, 1035L, 1036L, 1037L, 1038L, 1039L,
1040L, 1041L, 1042L, 1043L, 1044L, 1045L, 1046L, 1047L, 1048L,
1049L, 1050L, 1081L, 1082L, 1083L, 1084L, 1085L, 1086L, 1087L,
1088L, 1089L, 1090L, 1091L, 1092L, 1093L, 1094L, 1095L, 1096L,
1097L, 1098L, 1099L, 1100L, 1101L, 1102L, 1103L, 1104L, 1105L,
1106L, 1107L, 1108L, 1109L, 1113L, 1114L, 1115L, 1116L, 1117L,
1118L, 1119L, 1120L, 1121L, 1122L, 1123L, 1124L, 1125L, 1126L,
1127L, 1128L, 1129L, 1130L, 1131L, 1132L, 1133L, 1134L, 1135L,
1136L, 1137L, 1138L, 1139L, 1140L, 1141L, 1142L, 1143L, 1144L,
1145L, 1146L, 1147L, 1148L, 1149L, 1150L, 1151L, 1152L, 1153L,
1154L, 1155L, 1186L, 1187L, 1188L, 1189L, 1190L, 1191L, 1192L,
1193L, 1194L, 1195L, 1196L, 1197L, 1198L, 1199L, 1200L, 1201L,
1202L, 1203L, 1204L, 1205L, 1206L, 1207L, 1208L, 1209L, 1210L,
1211L, 1212L, 1213L, 1214L, 1218L, 1219L, 1220L, 1221L, 1222L,
1223L, 1224L, 1225L, 1226L, 1227L, 1228L, 1229L, 1230L, 1231L,
1232L, 1233L, 1234L, 1235L, 1236L, 1237L, 1238L, 1239L, 1240L,
1241L, 1242L, 1243L, 1244L, 1245L, 1246L, 1247L, 1248L, 1249L,
1250L, 1251L, 1252L, 1253L, 1254L, 1255L, 1256L, 1257L, 1258L,
1259L, 1260L), class = "data.frame")
以下是12个最大值和最小值的两个字符串,其顺序与刻面时变量的顺序相对应:
MaxY <- c(0.1, 9.8, 3, 327839.8, 191712.6, 72.2, 5.2, 10, 53, 21.2, 13.4,
18.4)
MinY <- c(0.02, 0, 0, 29.8, 132.8, 0, 0, 0, 0, 0, 0, 0)
我的阴谋尝试:
dat_split <- split(Resp_L, Resp_L$P)
plots <-
lapply(dat_split, function(df)
ggplot(df, aes(x = X, y = value)) +
geom_point() + geom_line(col='blue')+ ylab('')+ ylim(MinY, MaxY)+
theme(plot.title = element_text(size = 10, face = "bold") )+
ggtitle(df$P[1]) + facet_grid(variable ~ ., scales = 'free_x'))
gridExtra::grid.arrange(grobs = plots)
但是它不会接受这种指定ylim()
的方式,并且我无法弄清楚如何以可能的方式组织数据。
我收到此错误:
Error in limits.numeric(c(...), "y") : length(lims) == 2 is not TRUE