尝试运行bash脚本时出现“找不到命令”

时间:2019-08-21 06:40:25

标签: linux bash docker unix

我正在尝试从名为 dev_ro 的脚本运行bash脚本,这就是它的调用方式。

export SUBNET="$(first_available_docker_network --lock-seconds 7200)"

我正在通过./dev_ro呼叫dev_ro

我确定我有

#!/bin/bash
位于两个文件顶部的

这是两个文件的烫发

 $ ls -lh dev_ro 
-rwxrwxr-x 1 ME ME 423 Aug 21 15:57 dev_ro

$ ls -lh first_available_docker_network
-rwxrwxr-x 1 ME ME 2.2K Aug 21 15:55 first_available_docker_network

这是运行./dev_ro的输出

++ first_available_docker_network --lock-seconds 7200
compose/everest-compose: line 25: first_available_docker_network: command not found

另外,当我尝试运行脚本时:

ME@SERVER:~/Rosetta/compose$ first_available_docker_network
first_available_docker_network: command not found
ME@SERVER:~/Rosetta/compose$ 

我在不同的服务器上运行了相同的设置,并且可以正常工作。该代码是从Git提取的,因此它是相同的代码库。

非常感谢您的帮助。

ME@OTHER_SERVER:~/Rosetta/compose$ first_available_docker_network
DEBUG:root:Docker subnets: [IPv4Network(... etc
ME@OTHER_SERVER:~/Rosetta/compose$ ^C

1 个答案:

答案 0 :(得分:0)

def simple_conv_model(): input_layer=layers.Input(shape=(64,64,3), name="input_layer") model=layers.Conv2D(16,3, activation="relu", padding='same', name="first_block_conv", strides=(1,1)) (input_layer) model=layers.MaxPooling2D((2,2), name="first_block_pooling") (model) model=layers.BatchNormalization(name="first_block_bn") (model) model=layers.Conv2D(32,3, activation="relu", padding='same', name="second_block_conv", strides=(1,1)) (input_layer) model=layers.MaxPooling2D((2,2), name="second_block_pooling") (model) model=layers.BatchNormalization(name="second_block_bn") (model) model=layers.Conv2D(64,3, activation="relu", padding='same', name="third_block_conv", strides=(1,1)) (input_layer) model=layers.MaxPooling2D((2,2), name="third_block_pooling") (model) model=layers.BatchNormalization(name="third_block_bn") (model) model=layers.Flatten() (model) model=layers.Dense(16, activation="relu", name="dense_1") (model) model=layers.BatchNormalization() (model) model=layers.Dropout(0.5, name="drop_out_dense_1") (model) model=layers.Dense(4, activation="relu", name="dense_2") (model) model=layers.Dense(1, activation="linear") (model) model_cnn = Model(input_layer, model) model_cnn.compile(loss="mean_absolute_percentage_error", optimizer="adam") return model_cnn model = simple_conv_model() 不是标准的Linux命令。这必须是您的自定义脚本。尝试使用其绝对路径执行。例如,代替使用+

  

ME @ SERVER:〜/ Rosetta / compose $ first_available_docker_network

使用

  

ME @ SERVER:〜/ Rosetta / compose $ 绝对脚本路径 / first_available_docker_network

或者,

您可以尝试将first_available_docker_network的路径添加到first_available_docker_network变量中。