TidyLPA显示我的配置文件非常接近,因为该图包括4sd处的一些数据,这些数据不是特别相关。我需要关闭轮廓,以便更好地区分它们,我想这可以像使用ylim一样在其他图中完成。 我可以在其他图中设置ylim = c(-2,2),但不能在tidyLPA中设置。有什么想法吗?
df14sdips %>%
+ estimate_profiles(3) %>%
+ plot_profiles(ylim(c(2,-2)))
df14sdips %>%
+ estimate_profiles(3) %>%
+ plot_profiles() %>%
+ ylim = c(-2,2)
我希望将潜在轮廓分析图的y轴限制为2sd,以便可以更好地可视化轮廓。
样本数据-6个测试中的 30个条目(.txt):
"Maths LOVS" "Maths Cito" "Vocabulary LOVS" "Reading LOVS" "Language Cito" "StudySkills Cito"
"1" 0.0671429326375007 1.06391342455154 -1.08388039914369 -0.816179736326985 0.25173862392771 0.517265154353926
"2" -1.12597344846514 0.505551882271436 -0.617399002616901 -0.0936445452475341 0.467918743647645 0.863546370410494
"3" 0.120339518761401 0.539906264698047 -1.73064169926657 -0.16733347384839 0.502273126074255 0.735456263581255
"4" -0.23903065167119 -0.304811612163194 -0.278746590553686 0.0670640778022095 0.380288694719723 0.375236081866138
"5" -0.616382072080422 0.829738362032626 -0.322127523646096 -1.20658478854632 0.108062809830955 1.20729321240926
"6" -1.05638810370839 0.378673529842578 -0.395291601431218 -0.537500172155185 0.921466371810001 0.68903997564221
"7" 0.197205046990417 1.29801892403265 -1.03461552377744 -1.57723969366673 0.225212238189229 0.89141900823188
"8" 0.410678352345201 1.63878176065714 -0.991809117940375 -1.01191989462087 -0.258453740044383 0.212722639603278
"9" 0.286240693862018 0.902271136984276 -0.641390318960871 -0.352337815303102 0.28421201776927 -0.478995714351591
"10" -0.405733436792271 0.775313406727944 -0.193130682257497 -0.642678193863461 0.425240166391235 0.0409887397940498
"11" 0.557908919234021 1.75170738084235 -1.6071888331962 -0.944545589582956 -0.363626845879404 0.605744968582188
"12" -0.275936614196619 0.859746482057899 -1.17635036238632 0.138201426304247 0.116008948880089 0.338330119340708
"13" 0.827367601944659 0.843512425456673 -0.854655826391371 0.0295470576455958 -0.750558030825914 -0.0952132278296429
"14" -0.941375571307427 0.0880070497841929 -0.538251964340366 -0.129838175823515 1.13159248396757 0.389866177719545
"15" -0.708721149924812 0.483948766666165 -0.146566729723096 -0.594289901872797 0.496202780900443 0.469426233954097
"16" -0.975014456852698 -0.175271934632946 1.03978115528315 -0.320837142231226 3.39150395194588 0.0398384264878348
"17" -1.05157381100508 0.545082300519202 -3.372332465639128 -0.155004779423627 0.178380009229804 0.855448746318834
"18" -0.125534258383198 0.755569775331894 -1.11496311219107 0.341213971927773 0.1448646497756 -0.0011510264609994
"19" -0.423731204930964 -0.0517852962947251 0.560554253292851 -0.770130738733248 4.664652048858308 0.0204409378077781
"20" -0.108827026140084 0.63392867574321 -0.847646296356465 0.466905492334106 -0.161617073927934 0.0172562283471669
"21" 4.390870755775603 2.09213452493676 -1.45018348579508 -0.898320062393696 -0.243219491440494 0.108717758916913
"22" 0.0649434157211933 0.368279430950211 -0.762890960113354 0.153069568868156 -0.336767070298771 0.513365614872566
"23" -0.774530069404755 0.222240422509287 4.799989661620209 -0.0372030729572412 -0.21097807259087 0.000481130823370091
"24" 0.91794864548949 0.0331364945687819 -0.280145903839457 -0.473639620892763 -0.518406420835466 0.321106805509415
"25" -0.231997063653461 1.63086118348102 -2.05490646213536 -0.225138638061037 0.583958605884264 0.297222374484574
"26" -0.173624574383766 0.499956961583629 -0.500239783035331 0.2405134661171 0.142529727588207 -0.209135797869839
"27" -0.531762508998681 1.19218313379532 0.191986389176359 -1.17410492670681 0.00105202764781032 0.320645885086002
"28" -0.356407487700386 1.57562492534999 0.134022115059063 -0.890236105813171 0.0148125709727817 -0.477816017868278
"29" -0.370237847403355 0.302779416055362 0.523323395376514 -0.39015500528386 -0.468783289004379 0.403073330259718
"30" -0.32387957325217 -0.424529752956463 -0.264653430059215 0.494715150749882 0.310457706784524 0.207889898733443