我正在创建一个csv表,其中包含我所有订单的信息。现在我想卖掉那些物品,但是我想根据物品的价格增加额外的附加费。我创建了一个带有surcharge的新表,我在其中有名为'from'和'to'的列,在这些列中我必须比较商品价格,然后在销售价格中包含正确的附加费。
但是我无法做到这一点。我尝试了不同的方法,但似乎没有一种有效。任何帮助都很好:)
我的桌子看起来像这样:
OrderNo NetPerPiece costsDividedPerOrder HandlingPerPiece
0 7027514279 44.24 0.008007 0.354232
1 7027514279 15.93 0.008007 0.127552
2 7027514279 15.93 0.008007 0.127552
3 7027514279 15.93 0.008007 0.127552
4 7027514279 15.93 0.008007 0.127552
surcharges = {'surcharge': [0.35, 0.25, 0.2, 0.15, 0.12, 0.1],
'from': [0, 20, 200, 500, 1500, 5000],
'to' : [20, 200, 500, 1500, 5000,1000000000] }
surchargeTable = DataFrame(surcharges, columns=['surcharge', 'from', 'to'])
productsPerOrder['NetPerpieceSale'] = numpy.where(((productsPerOrder['NetPerPiece'] >= surchargeTable['from']) & (productsPerOrder['NetPerPiece'] < surchargeTable['to'])), surchargeTable['surcharge'])
#I also tried this:
for index, row in productsPerOrder.iterrows():
if row['NetPerPiece'] >= surchargeTable['from'] & row['NetPerPiece'] < surchargeTable['to']:
productsPerOrder.loc[index,'NerPerPieceSale'] = surchargeTable.loc[row,'NetPerPieceSale'].values(0)
我希望它看起来像这样:
OrderNo NetPerPiece costsDividedPerOrder HandlingPerPiece NetPerPieceSale
0 7027514279 44.24 0.008007 0.354232 0.25
1 7027514279 15.93 0.008007 0.127552 0.35
2 7027514279 15.93 0.008007 0.127552 0.35
3 7027514279 15.93 0.008007 0.127552 0.35
4 7027514279 15.93 0.008007 0.127552 0.35
提醒一下,包含项目的文件要大得多,我只显示了csv列表的开头。因此表的长度不同
SurchargeTable看起来像这样:
surcharge from to
0 0.35 0 20
1 0.25 20 200
2 0.20 200 500
3 0.15 500 1500
4 0.12 1500 5000
5 0.10 5000 1000000000
答案 0 :(得分:2)
另一种方法是使用implementation 'org.springframework.boot.experimental:spring-boot-starter-data-r2dbc:0.1.0.BUILD-SNAPSHOT'
和pd.IntervalIndex
:
map
输出:
# Create IntervalIndex on surchageTable dataframe
surchargeTable = surchargeTable.set_index(pd.IntervalIndex.from_arrays(surchargeTable['from'],
surchargeTable['to']))
#Use map to pd.Series created from surchargeTable IntervalIndex and surcharge column.
productsPerOrder['NetPerPieceSale'] = productsPerOrder['NetPerPiece'].map(surchargeTable['surcharge'])
productsPerOrder
答案 1 :(得分:1)
创建一个函数来计算附加费,然后使用.apply
将其应用到“ NetPerPiece”行。
import pandas as pd
df = pd.read_csv('something.csv')
def get_surcharges(x):
to = [0, 20, 200, 500, 1500, 5000]
fr = [20, 200, 500, 1500, 5000,1000000000]
surcharges = [0.35, 0.25, 0.2, 0.15, 0.12, 0.1]
rr = list(zip(to, fr, surcharges))
price = [r[2] for r in rr if x > r[0] and x <r[1]]
return price[0]
df['NetPerpieceSale'] = df['NetPerPiece'].apply(lambda x: get_surcharges(x))
print(df)
这将输出:
OrderNo NetPerPiece costsDividedPerOrder HandlingPerPiece NetPerpieceSale
0 7027514279 44.24 0.008007 0.354232 0.25
1 7027514279 15.93 0.008007 0.127552 0.35
2 7027514279 15.93 0.008007 0.127552 0.35
3 7027514279 15.93 0.008007 0.127552 0.35
4 7027514279 15.93 0.008007 0.127552 0.35
不带for循环的选项(有点冗长):
def get_surcharges(x):
if x > 0:
if x > 20:
if x > 200:
if x > 500:
if x > 1500:
if x > 5000:
return 0.1
else:
return 0.12
else:
return 0.15
else:
return 0.2
else:
return 0.25
else:
return 0.35
答案 2 :(得分:0)
使用上述NetPerPieceScale的计算,只需在现有数据框中添加一列
或者您可以将计算结果保存到这样的数据框中:
net=pd.DataFrame(NetPerPieceScale, columns=['NetPerPieceScale '])
只需将其连接到现有数据框,您将在1个表中拥有所有内容