如何按组(ID)复制最后一行?

时间:2019-08-20 11:43:37

标签: r dplyr data.table tidyverse

我有一个随着时间推移接触表面的data.frame。我只想为每个AcvitivityID附加最后一行的副本:

head(movsdf.rbind)
  ActivityID CareType HCWType Orientation    Surface       Date     Time       Dev.Date.Time SurfaceCategories
1         01       IV    RN01  leftFacing AlcOutside 2019-08-03 11:08:01 2019-08-03 11:08:01       HygieneArea
2         01       IV    RN01  leftFacing         In 2019-08-03 11:08:12 2019-08-03 11:08:12                In
3         01       IV    RN01  leftFacing       Door 2019-08-03 11:08:12 2019-08-03 11:08:12        FarPatient
4         02       IV    RN01  leftFacing       Door 2019-08-03 11:08:18 2019-08-03 11:08:18        FarPatient
5         02       IV    RN01  leftFacing      Other 2019-08-03 11:08:22 2019-08-03 11:08:22        FarPatient
6         03       IV    RN01  leftFacing      Table 2019-08-03 11:10:26 2019-08-03 11:10:26       NearPatient

示例数据:

movsdf.rbind<-data.frame(ActivityID=rep(1:4, each=10),Surface=rep(c("In","Table","Out"),each=10))

所以我可以从here开始使用它:

repeatss <- aggregate(movsdf.rbind, by=list(movsdf.rbind$ActivityID), FUN = function(x) { last = tail(x,1) })

movsdf.rbind <-rbind(movsdf.rbind, repeatss)

这可以解决问题,但是看起来很笨拙,然后数据不整齐(不是真的很重要,但是我认为dplyrdata.table中可能存在一些更优雅的东西)。有什么想法吗?

5 个答案:

答案 0 :(得分:7)

使用slice的另一种选择:

library(dplyr)

DF %>% 
  group_by(ActivityID) %>% 
  slice(c(1:n(),n()))

给出:

# A tibble: 9 x 9
# Groups:   ActivityID [3]
  ActivityID CareType HCWType Orientation Surface    Date      Time     Dev.Date.Time     SurfaceCategori~
       <int> <chr>    <chr>   <chr>       <chr>      <chr>     <chr>    <chr>             <chr>           
1          1 IV       RN01    leftFacing  AlcOutside 2019-08-~ 11:08:01 2019-08-03 11:08~ HygieneArea     
2          1 IV       RN01    leftFacing  In         2019-08-~ 11:08:12 2019-08-03 11:08~ In              
3          1 IV       RN01    leftFacing  Door       2019-08-~ 11:08:12 2019-08-03 11:08~ FarPatient      
4          1 IV       RN01    leftFacing  Door       2019-08-~ 11:08:12 2019-08-03 11:08~ FarPatient      
5          2 IV       RN01    leftFacing  Door       2019-08-~ 11:08:18 2019-08-03 11:08~ FarPatient      
6          2 IV       RN01    leftFacing  Other      2019-08-~ 11:08:22 2019-08-03 11:08~ FarPatient      
7          2 IV       RN01    leftFacing  Other      2019-08-~ 11:08:22 2019-08-03 11:08~ FarPatient      
8          3 IV       RN01    leftFacing  Table      2019-08-~ 11:10:26 2019-08-03 11:10~ NearPatient     
9          3 IV       RN01    leftFacing  Table      2019-08-~ 11:10:26 2019-08-03 11:10~ NearPatient

两个基本的R替代方案:

# one
lastrows <- cumsum(aggregate(CareType ~ ActivityID, DF, length)[[2]])
DF[sort(c(seq(nrow(DF)), lastrows)),]

# two
idx <- unlist(tapply(1:nrow(DF), DF$ActivityID, FUN = function(x) c(x, tail(x, 1))))
DF[idx,]

两者给出相同的结果。


两个替代方案:

library(data.table)
setDT(DF)          # convert 'DF' to a data.table

# one
DF[DF[, .I[c(1:.N,.N)], by = ActivityID]$V1]

# two
DF[, .SD[c(1:.N,.N)], by = ActivityID]

使用的数据:

DF <- structure(list(ActivityID = c(1L, 1L, 1L, 2L, 2L, 3L),
                     CareType = c("IV", "IV", "IV", "IV", "IV", "IV"),
                     HCWType = c("RN01", "RN01", "RN01", "RN01", "RN01", "RN01"),
                     Orientation = c("leftFacing", "leftFacing", "leftFacing", "leftFacing", "leftFacing", "leftFacing"),
                     Surface = c("AlcOutside", "In", "Door", "Door", "Other", "Table"),
                     Date = c("2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03", "2019-08-03"),
                     Time = c("11:08:01", "11:08:12", "11:08:12", "11:08:18", "11:08:22", "11:10:26"),
                     Dev.Date.Time = c("2019-08-03 11:08:01", "2019-08-03 11:08:12", "2019-08-03 11:08:12", "2019-08-03 11:08:18", "2019-08-03 11:08:22", "2019-08-03 11:10:26"),
                     SurfaceCategories = c("HygieneArea", "In", "FarPatient", "FarPatient", "FarPatient", "NearPatient")),
                class = "data.frame", row.names = c(NA, -6L))

答案 1 :(得分:3)

一种dplyrtidyr的可能性是(使用来自@Jaap的样本数据):

DF %>%
 group_by(ActivityID) %>%
 uncount((row_number() == max(row_number())) + 1)

  ActivityID CareType HCWType Orientation Surface   Date     Time   Dev.Date.Time   SurfaceCategori…
       <int> <chr>    <chr>   <chr>       <chr>     <chr>    <chr>  <chr>           <chr>           
1          1 IV       RN01    leftFacing  AlcOutsi… 2019-08… 11:08… 2019-08-03 11:… HygieneArea     
2          1 IV       RN01    leftFacing  In        2019-08… 11:08… 2019-08-03 11:… In              
3          1 IV       RN01    leftFacing  Door      2019-08… 11:08… 2019-08-03 11:… FarPatient      
4          1 IV       RN01    leftFacing  Door      2019-08… 11:08… 2019-08-03 11:… FarPatient      
5          2 IV       RN01    leftFacing  Door      2019-08… 11:08… 2019-08-03 11:… FarPatient      
6          2 IV       RN01    leftFacing  Other     2019-08… 11:08… 2019-08-03 11:… FarPatient      
7          2 IV       RN01    leftFacing  Other     2019-08… 11:08… 2019-08-03 11:… FarPatient      
8          3 IV       RN01    leftFacing  Table     2019-08… 11:10… 2019-08-03 11:… NearPatient     
9          3 IV       RN01    leftFacing  Table     2019-08… 11:10… 2019-08-03 11:… NearPatient 

或者:

DF %>%
 group_by(ActivityID) %>%
 uncount((row_number() == n()) + 1)

答案 2 :(得分:3)

如果我们只希望为每个组重复最后一行,则足以知道每个组的最后一行编号。我们可以将duplicated的{​​{1}}参数设为fromLast来获取这些行号,然后将其与当前行相加。使用@Jaap的数据

TRUE

答案 3 :(得分:2)

这是基本的R解决方案。

result <- lapply(split(movsdf.rbind, movsdf.rbind$ActivityID), function(DF){
  rbind(DF, DF[nrow(DF), ])
})
result <- do.call(rbind, result)

result
#     ActivityID value
#1.1           1     1
#1.2           1     2
#1.3           1     3
#1.31          1     3
#2.4           2     4
#2.5           2     5
#2.6           2     6
#2.61          2     6
#3.7           3     7
#3.8           3     8
#3.9           3     9
#3.91          3     9

如果新的行号很丑陋,则可以使用

使其连续。
row.names(result) <- NULL

数据创建代码。

movsdf.rbind <- data.frame(ActivityID = rep(1:3, each = 3),
                           value = 1:9)

答案 4 :(得分:1)

我们可以static然后splitmap将每个数据帧的最后一行填充

bind_rows