Highlight.js样式未导入

时间:2019-08-20 05:51:10

标签: javascript highlight.js

我在我的vuejs项目中使用highlight.js。我已经尝试了vue-highlightjs和原始包,但仍然没有效果。

我的代码

Vue JS主文件

import numpy as np
import random
import matplotlib.pyplot as plt
import tensorflow as tf
import warnings
from sklearn.preprocessing import MinMaxScaler

warnings.simplefilter(action='once', category=FutureWarning) # future warnings annoy me

# add in a couple of rewards and light durations
current_reward = [[-1000,-900,-950]]
current_green = [[10,12,12]]

current_reward = np.array(current_reward)
current_green = np.array(current_green)





scaler = MinMaxScaler()
scaler.fit(current_reward)
current_reward= scaler.transform(current_reward)

scaler.fit(current_green)
current_green=scaler.transform(current_green)

# Pass in reward and green_light
def green_light_duration_new(current_reward, current_green):
    # Predicting the best light duration based on previous rewards.
    # predict the best duration based on previous step's reward value, using simple linear regression model
    x = current_reward
    y = current_green
    n = len(x)




    # Plot of Training Data  
    plt.scatter(x, y) 
    plt.xlabel('Reward') 
    plt.ylabel('Green Light Duration') 
    plt.title("Training Data") 
    plt.show() 

    X = tf.placeholder("float") 
    Y = tf.placeholder("float") 
    W = tf.Variable(np.random.randn(), name = "W") 
    b = tf.Variable(np.random.randn(), name = "b") 
    learning_rate = 0.01
    training_epochs = 500
    # Hypothesis 
    y_pred = tf.add(tf.multiply(X, W), b) 
    print('y_pred : ', y_pred)
    print('y_pred dtype : ', y_pred.dtype)
    # Mean Squared Error Cost Function 
    cost = tf.reduce_sum(tf.pow(y_pred-Y, 2)) / (2 * n)
    print('cost : ', cost)
    print('cost dtype: ', cost.dtype)
    # Gradient Descent Optimizer 
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)    
    # Global Variables Initializer 
    init = tf.global_variables_initializer()
    # Starting the Tensorflow Session 
    with tf.Session() as sess: 
        # Initializing the Variables 
        sess.run(init) 
        # Iterating through all the epochs 
        for epoch in range(training_epochs): 
            # Feeding each data point into the optimizer using Feed Dictionary 
            for (_x, _y) in zip(x, y): 
                print('_x : ',_x)
                print('_y : ',_y)
                sess.run(optimizer, feed_dict = {X : _x, Y : _y}) 
            # Displaying the result after every 50 epochs 
            if (epoch + 1) % 50 == 0: 
                # Calculating the cost a every epoch 
                c = sess.run(cost, feed_dict = {X : x, Y : y}) 
                print('c : ', c)
                print('c dtype : ', c.dtype)
                print("Epoch", (epoch + 1), ": cost =", c, "W =", sess.run(W), "b =", sess.run(b)) 
        # Storing necessary values to be used outside the Session 
        training_cost = sess.run(cost, feed_dict ={X: x, Y: y}) 
        print('training_cost : ', training_cost)
        print('training_cost dtype : ', training_cost.dtype)
        weight = sess.run(W)
        print('weight : ', weight)
        print('weight : ', weight.dtype)
        bias = sess.run(b)
        print('bias : ', bias)
        print('biad dtype : ', bias.dtype)
    # Calculating the predictions 
    green_light_duration_new = weight * x + bias 
    print("Training cost =", training_cost, "Weight =", weight, "bias =", bias, '\n')
    # Plotting the Results 
    plt.plot(x, y, 'ro', label ='Original data') 
    plt.plot(x, green_light_duration_new, label ='Fitted line') 
    plt.title('Linear Regression Result') 
    plt.legend() 
    plt.show() 
    return green_light_duration_new

# Go to the training function
new_green_dur = green_light_duration_new(current_reward, current_green)

# Append the predicted green light to its list
np.concatenate((current_green, new_green_dur))
#current_green.append(new_green_dur)

# Go on to run the rest of the simulation with the new green light duration,
# and append its subsequent reward to current_reward list to run again later.

代码段

import Vue from "vue";
import VueHighlightJS from "vue-highlightjs";
import "highlight.js/styles/agate.css";

Vue.use(VueHighlightJS);

实际结果

enter image description here

预期结果

它应该加载这样的样式。

0 个答案:

没有答案