我正在尝试加载通过保存的tf-agents
策略
try:
PolicySaver(collect_policy).save(model_dir + 'collect_policy')
except TypeError:
tf.saved_model.save(collect_policy, model_dir + 'collect_policy')
try / except块的简要说明:最初创建策略时,我可以通过PolicySaver
保存它,但是当我再次加载它以进行另一次训练时,它是SavedModel
并且可以因此不会被PolicySaver
保存。
这似乎很好用,但是现在我想将此策略用于自播放,因此我在AIPlayer类中的self.policy = tf.saved_model.load(policy_path)
加载了该策略。但是,当我尝试将其用于预测时,它不起作用。这是(测试)代码:
def decide(self, table):
state = table.getState()
timestep = ts.restart(np.array([table.getState()], dtype=np.float))
prediction = self.policy.action(timestep)
print(prediction)
传递给函数的table
包含游戏的状态,并且ts.restart()
函数是从我的自定义pyEnvironment复制的,因此时间步的构造与环境中的完全相同。但是,对于行prediction=self.policy.action(timestep)
,我收到以下错误消息:
ValueError: Could not find matching function to call loaded from the SavedModel. Got:
Positional arguments (2 total):
* TimeStep(step_type=<tf.Tensor 'time_step:0' shape=() dtype=int32>, reward=<tf.Tensor 'time_step_1:0' shape=() dtype=float32>, discount=<tf.Tensor 'time_step_2:0' shape=() dtype=float32>, observation=<tf.Tensor 'time_step_3:0' shape=(1, 79) dtype=float64>)
* ()
Keyword arguments: {}
Expected these arguments to match one of the following 2 option(s):
Option 1:
Positional arguments (2 total):
* TimeStep(step_type=TensorSpec(shape=(None,), dtype=tf.int32, name='time_step/step_type'), reward=TensorSpec(shape=(None,), dtype=tf.float32, name='time_step/reward'), discount=TensorSpec(shape=(None,), dtype=tf.float32, name='time_step/discount'), observation=TensorSpec(shape=(None,
79), dtype=tf.float64, name='time_step/observation'))
* ()
Keyword arguments: {}
Option 2:
Positional arguments (2 total):
* TimeStep(step_type=TensorSpec(shape=(None,), dtype=tf.int32, name='step_type'), reward=TensorSpec(shape=(None,), dtype=tf.float32, name='reward'), discount=TensorSpec(shape=(None,), dtype=tf.float32, name='discount'), observation=TensorSpec(shape=(None, 79), dtype=tf.float64, name='observation'))
* ()
Keyword arguments: {}
我在做什么错?到底是张量名称还是形状问题,我该如何更改?
任何关于如何进一步调试的想法都将受到赞赏。
答案 0 :(得分:2)
我通过手动构造TimeStep使其起作用:
step_type = tf.convert_to_tensor(
[0], dtype=tf.int32, name='step_type')
reward = tf.convert_to_tensor(
[0], dtype=tf.float32, name='reward')
discount = tf.convert_to_tensor(
[1], dtype=tf.float32, name='discount')
observations = tf.convert_to_tensor(
[state], dtype=tf.float64, name='observations')
timestep = ts.TimeStep(step_type, reward, discount, observations)
prediction = self.policy.action(timestep)