我想知道如何使用sklearn运行多类,多标签,序数分类。我想预测目标群体的排名,范围从某个位置上最普遍的一个(1)到最不普遍的一个(7)。 我似乎无法正确处理。你能帮我吗?
# Random Forest Classification
# Import
import numpy as np
import pandas as pd
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split
from sklearn.metrics import make_scorer, accuracy_score, confusion_matrix, f1_score
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
# Import dataset
dataset = pd.read_excel('alle_probs_edit.v2.xlsx')
X = dataset.iloc[:,4:-1].values
Y = dataset.iloc[:,-1].values
# Split in Train and Test
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 42 )
# Scaling the features (alle Variablen auf eine gleiche Ebene), necessary depend on the choosen method
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
# Creat classifier
classifier = RandomForestClassifier(criterion = 'entropy')
# Choose some parameter combinations to try
parameters = {'bootstrap': [True, False],
'max_depth': [50],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 3, 4],
'min_samples_split': [9, 10, 11, 12, 13],
'n_estimators': [500,1000,1500]}
# Type of scoring used to compare parameter combinations
acc_scorer = make_scorer(accuracy_score)
# Run the grid search
grid_obj = GridSearchCV(classifier, parameters, scoring=acc_scorer, cv = 3, n_jobs = -1)
grid_obj = grid_obj.fit(X_train, Y_train)
# Set the classifier to the best combination of parameters
classifier = grid_obj.best_estimator_
# Fit the best algorithm to the data
classifier.fit(X_train, Y_train)
#Prediction the Test data
Y_pred = classifier.predict(X_test)
#Confusion Matrix
cm = pd.DataFrame(confusion_matrix(Y_test, Y_pred))
#Accuracy
accuracy1 = accuracy_score(Y_test, Y_pred)
print("Accuracy1: %.2f%%" % (accuracy1 * 100.0))
# k-Fold Class Validation
accuracy1 = cross_val_score(estimator = classifier, X = X_train, y = Y_train, cv = 10)
kfold = accuracy1.mean()
accuracy1.std()
答案 0 :(得分:1)
这可能不是您要找的准确答案,this article概述了一种技术,如下所示:
我们可以通过将k类有序回归问题转换为k-1个二元分类问题来利用有序类的值,将有序值V1,V2,V3,…,Vk的有序属性A *转换为k -1个二进制属性,每个与原始属性的前k-1个值相对应。第ith个二进制属性表示测试A *> Vi
基本上,聚合多个二进制分类器(预测目标> 1,目标> 2,目标> 3,目标> 4)可以预测目标是1、2、3、4还是5。作者创建了一个在Python字典中存储多个二进制分类器的OrdinalClassifier类。
class OrdinalClassifier():
def __init__(self, clf):
self.clf = clf
self.clfs = {}
def fit(self, X, y):
self.unique_class = np.sort(np.unique(y))
if self.unique_class.shape[0] > 2:
for i in range(self.unique_class.shape[0]-1):
# for each k - 1 ordinal value we fit a binary classification problem
binary_y = (y > self.unique_class[i]).astype(np.uint8)
clf = clone(self.clf)
clf.fit(X, binary_y)
self.clfs[i] = clf
def predict_proba(self, X):
clfs_predict = {k:self.clfs[k].predict_proba(X) for k in self.clfs}
predicted = []
for i,y in enumerate(self.unique_class):
if i == 0:
# V1 = 1 - Pr(y > V1)
predicted.append(1 - clfs_predict[y][:,1])
elif y in clfs_predict:
# Vi = Pr(y > Vi-1) - Pr(y > Vi)
predicted.append(clfs_predict[y-1][:,1] - clfs_predict[y][:,1])
else:
# Vk = Pr(y > Vk-1)
predicted.append(clfs_predict[y-1][:,1])
return np.vstack(predicted).T
def predict(self, X):
return np.argmax(self.predict_proba(X), axis=1)
答案 1 :(得分:1)
这是一个使用 KNN 的示例,它应该可以在 sklearn 管道或网格搜索中进行调整。
from sklearn.neighbors import KNeighborsClassifier
from sklearn.base import clone, BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_X_y, check_is_fitted, check_array
from sklearn.utils.multiclass import check_classification_targets
class KNeighborsOrdinalClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, n_neighbors=5, *, weights='uniform',
algorithm='auto', leaf_size=30, p=2,
metric='minkowski', metric_params=None, n_jobs=None):
self.n_neighbors = n_neighbors
self.weights = weights
self.algorithm = algorithm
self.leaf_size = leaf_size
self.p = p
self.metric = metric
self.metric_params = metric_params
self.n_jobs = n_jobs
def fit(self, X, y):
X, y = check_X_y(X, y)
check_classification_targets(y)
self.clf_ = KNeighborsClassifier(**self.get_params())
self.clfs_ = {}
self.classes_ = np.sort(np.unique(y))
if self.classes_.shape[0] > 2:
for i in range(self.classes_.shape[0]-1):
# for each k - 1 ordinal value we fit a binary classification problem
binary_y = (y > self.classes_[i]).astype(np.uint8)
clf = clone(self.clf_)
clf.fit(X, binary_y)
self.clfs_[i] = clf
return self
def predict_proba(self, X):
X = check_array(X)
check_is_fitted(self, ['classes_', 'clf_', 'clfs_'])
clfs_predict = {k:self.clfs_[k].predict_proba(X) for k in self.clfs_}
predicted = []
for i,y in enumerate(self.classes_):
if i == 0:
# V1 = 1 - Pr(y > V1)
predicted.append(1 - clfs_predict[y][:,1])
elif y in clfs_predict:
# Vi = Pr(y > Vi-1) - Pr(y > Vi)
predicted.append(clfs_predict[y-1][:,1] - clfs_predict[y][:,1])
else:
# Vk = Pr(y > Vk-1)
predicted.append(clfs_predict[y-1][:,1])
return np.vstack(predicted).T
def predict(self, X):
X = check_array(X)
check_is_fitted(self, ['classes_', 'clf_', 'clfs_'])
return np.argmax(self.predict_proba(X), axis=1)