我已经在数据集上编写了这两个groupby函数,第一个对数据进行了分组,并将数据的日期时间分隔为开始日期时间,结束日期时间。
这是数据集:
Blast Hole East Coordinate North Coordinate Collar Theoritical Depth Tag Detector ID Date and Time Detection_Location Detection Date & Time
64 16745.42 107390.32 2634.45 15.95 385656531 23-08-2018 2:39:34 PM CV23 2018-09-08 14:18:17
61 16773.48 107382.6 2634.68 16.18 385760755 23-08-2018 2:38:32 PM CV23 2018-09-08 14:24:19
63 16755.07 107387.68 2634.58 16.08 385262370 23-08-2018 2:39:30 PM CV23 2018-09-08 14:12:42
105 16764.83 107347.67 2634.74 16.24 385742468 23-08-2018 2:41:29 PM CV22 2018-09-06 20:02:46
100 16752.74 107360.32 2634.33 15.83 385112050 23-08-2018 2:41:08 PM CV22 2018-09-06 20:15:42
99 16743.1 107362.96 2634.36 15.86 385087366 23-08-2018 2:41:05 PM CV22 2018-09-06 20:49:21
35 16747.75 107417.68 2635.9 17.4 385453358 23-08-2018 2:36:09 PM CV22 2018-09-23 05:47:44
5 16757.27 107452.4 2636 17.5 385662254 23-08-2018 2:35:03 PM CV22 2018-09-23 05:01:12
19 16770.89 107420.83 2634.81 16.31 385826979 23-08-2018 2:35:50 PM CV22 2018-09-23 05:52:54
第二部分帮助我将所有列保留在分组数据框中,就像之前用逗号分隔一样。
我在如何将这两个代码合并为一个代码并执行操作时遇到了问题:
df2 = (df1.groupby([pd.Grouper(key = 'Detection Date & Time', freq = 'H'),df.Detection_Location])
['Detection Date & Time'].agg(['first','last','size'])).reset_index()
df2 = df1.groupby("Detection date & Hour").agg({
'Blast Hole': lambda x: ','.join([str(n) for n in x]),
'East Coordinate': lambda x: ','.join([str(n) for n in x]),
'North Coordinate': lambda x: ','.join([str(n) for n in x]),
'Tag Detector ID': lambda x: ','.join([str(n) for n in x]),
'Detection_Location': lambda x: min(x),
'Detection Date & Time' : lambda x: len(x)}).reset_index().rename(columns = {'Detection Date & Time' : 'Tags'})
这是期望的结果:
Detection_Location_ first last size Blast Hole East Coordinate North Coordinate Tag Detector ID
CV22 2018-09-06 20:02:46 2018-09-06 20:49:21 3 105,100,99 16764.83,16752.74,16743.1 107347.67,107360.32,107362.96 385742468,385112050,385087366
CV23 2018-09-08 14:12:42 2018-09-08 14:24:19 3 64,61,63 16745.42,16773.48,16755.07 107390.32,107382.6,107387.68 385656531,385760755,385262370
CV22 2018-09-23 05:01:12 2018-09-23 05:52:54 3 35,5,19 16747.75,16757.27,16770.89 107417.68,107452.4,107420.83 385453358,385662254,385826979
答案 0 :(得分:1)
第一个想法是是否需要在groupby
中使用不同的值-第一个df21
与Grouper
,第二个仅与Grouper
:
df1['Date and Time'] = pd.to_datetime(df1['Date and Time'])
df1['Detection Date & Time'] = pd.to_datetime(df1['Detection Date & Time'])
df21 = (df1.groupby([pd.Grouper(key = 'Detection Date & Time', freq = 'H'),
df1.Detection_Location])
['Detection Date & Time'].agg(['first','last','size']))
#print (df21)
f = lambda x: ','.join(x.astype(str))
df22=(df1.groupby(pd.Grouper(key = 'Detection Date & Time', freq = 'H')).agg({
'Blast Hole': f,
'East Coordinate': f,
'North Coordinate': f,
'Tag Detector ID': f,
'Detection_Location': 'min',
'Detection Date & Time' : 'size'})
.dropna()
.rename(columns = {'Detection Date & Time' : 'Tags'})
.set_index('Detection_Location', append=True))
#print (df22)
df = pd.merge(df21, df22, left_index=True, right_index=True).reset_index()
print (df)
Detection Date & Time Detection_Location first \
0 2018-09-06 20:00:00 CV22 2018-09-06 20:02:46
1 2018-09-08 14:00:00 CV23 2018-09-08 14:18:17
2 2018-09-23 05:00:00 CV22 2018-09-23 05:47:44
last size Blast Hole East Coordinate \
0 2018-09-06 20:49:21 3 105,100,99 16764.83,16752.74,16743.1
1 2018-09-08 14:12:42 3 63,64,61 16755.07,16745.42,16773.48
2 2018-09-23 05:52:54 3 5,35,19 16757.27,16747.75,16770.89
North Coordinate Tag Detector ID Tags
0 107347.67,107360.32,107362.96 385742468,385112050,385087366 3
1 107387.68,107390.32,107382.6 385262370,385656531,385760755 3
2 107452.4,107417.68,107420.83 385662254,385453358,385826979 3
编辑:
如果需要按Grouper
分组并一起列:
df1['Date and Time'] = pd.to_datetime(df1['Date and Time'])
df1['Detection Date & Time'] = pd.to_datetime(df1['Detection Date & Time'])
f = lambda x: ','.join(x.astype(str))
df2=(df1.groupby([pd.Grouper(key='Detection Date & Time',freq='H'),
df1.Detection_Location]).agg({
'Blast Hole': f,
'East Coordinate': f,
'North Coordinate': f,
'Tag Detector ID': f,
'Detection Date & Time' : ['first','last','size']})
.reset_index()
.rename(columns = {'Detection Date & Time' : '', '<lambda>':''}))
df2.columns = df2.columns.map(''.join)
df2 = df2.rename(columns = {'' : 'Detection Date & Time'})
print (df2)
Detection Date & Time Detection_Location Blast Hole \
0 2018-09-06 20:00:00 CV22 105,100,99
1 2018-09-08 14:00:00 CV23 64,61,63
2 2018-09-23 05:00:00 CV22 35,5,19
East Coordinate North Coordinate \
0 16764.83,16752.74,16743.1 107347.67,107360.32,107362.96
1 16745.42,16773.48,16755.07 107390.32,107382.6,107387.68
2 16747.75,16757.27,16770.89 107417.68,107452.4,107420.83
Tag Detector ID first last size
0 385742468,385112050,385087366 2018-09-06 20:02:46 2018-09-06 20:49:21 3
1 385656531,385760755,385262370 2018-09-08 14:18:17 2018-09-08 14:12:42 3
2 385453358,385662254,385826979 2018-09-23 05:47:44 2018-09-23 05:52:54 3
答案 1 :(得分:1)
这可能对您有用(我从您先前的问题中知道您的数据看起来如何)
您可以只用agg(list)
df3=df.groupby([pd.Grouper(key = 'Detection_Date&Time', freq = 'H'),df.Detection_Location], sort=False).agg(list).reset_index()
然后,按如下所示合并另一个(从另一个问题到结果,此处为df2)
df2 = (df.groupby([pd.Grouper(key = 'Detection_Date&Time', freq = 'H'),df.Detection_Location], sort=False)['Detection_Date&Time']
.agg(['first','last','size'])).reset_index()
df4 = pd.merge(df2, df3, on=['Detection_Date&Time','Detection_Location'])
获得的输出如下
Detection_Date&Time Detection_Location first last size Blast_Hole East_Coordinate North_Coordinate Collar Theoritical_Depth Tag_Detector_ID Date_and_Time
0 2018-09-08 14:00:00 CV23 2018-09-08 14:18:00 2018-09-08 14:12:00 3 [64, 61, 63] [16745.42, 16773.48, 16755.07] [107390.32, 107382.6, 107387.68] [2634.45, 2634.68, 2634.58] [15.95, 16.18, 16.08] [385656531, 385760755, 385262370] [23-08-2018 2:39:34 PM, 23-08-2018 2:38:32 PM,...
1 2018-09-06 20:00:00 CV22 2018-09-06 20:02:00 2018-09-06 20:49:00 3 [105, 100, 99] [16764.83, 16752.74, 16743.1] [107347.67, 107360.32, 107362.96] [2634.74, 2634.33, 2634.36] [16.24, 15.83, 15.86] [385742468, 385112050, 385087366] [23-08-2018 2:41:29 PM, 23-08-2018 2:41:08 PM,...
2 2018-09-23 05:00:00 CV22 2018-09-23 05:47:00 2018-09-23 05:52:00 3 [35, 5, 19] [16747.75, 16757.27, 16770.89] [107417.68, 107452.4, 107420.83] [2635.9, 2636.0, 2634.81] [17.4, 17.5, 16.31] [385453358, 385662254, 385826979] [23-08-2018 2:36:09 PM, 23-08-2018 2:35:03 PM,...