如何使用regr.lm任务在mlr中设置多项式(自定义)公式

时间:2019-08-17 15:28:41

标签: r mlr

出于学习原因,我正在尝试使用BostonHousing包将多项式函数拟合到mlr数据中。

我无法弄清楚如何为使用的lm函数提供自定义公式,尤其是我想向输入变量之一添加多项式函数(出于测试目的)。

如何最好地实现这一目标?

library(mlr)

data("BostonHousing", package = "mlbench")

regr.task <- makeRegrTask(data = BostonHousing, target = "medv")
regr.learner <- makeLearner("regr.lm")

# I would like to specify the formula used by "regr.lm" myself, how can this be achieved?

regr.train <- train(regr.learner, regr.task)

lm.results <- getLearnerModel(regr.train)

summary(lm.results) 

Call:                                                                                 
stats::lm(formula = f, data = d)                                                      

Residuals:                                                                            
    Min      1Q  Median      3Q     Max                                               
-15.595  -2.730  -0.518   1.777  26.199                                               

Coefficients:                                                                         
              Estimate Std. Error t value Pr(>|t|)                                    
(Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***                                
crim        -1.080e-01  3.286e-02  -3.287 0.001087 **                                 
zn           4.642e-02  1.373e-02   3.382 0.000778 ***                                
indus        2.056e-02  6.150e-02   0.334 0.738288                                    
chas1        2.687e+00  8.616e-01   3.118 0.001925 **                                 
nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***                                
rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***                                
age          6.922e-04  1.321e-02   0.052 0.958229                                    
dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***                                
rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***                                
tax         -1.233e-02  3.760e-03  -3.280 0.001112 **                                 
ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***                                
b            9.312e-03  2.686e-03   3.467 0.000573 ***                                
lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***                                
---                                                                                   
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                        

Residual standard error: 4.745 on 492 degrees of freedom                              
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7338                           
F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16 

0 个答案:

没有答案