我是第一次对我的flask应用程序进行docker化,但是访问它时遇到了问题,这些是我遵循的步骤
我的docker文件看起来像这样
FROM ubuntu:18.04
RUN apt-get update -y && \
apt-get install -y python3-pip python3-dev
# We copy just the requirements.txt first to leverage Docker cache
COPY ./requirements.txt /app/requirements.txt
WORKDIR /app
RUN pip3 install -r requirements.txt
COPY . /app
ENTRYPOINT [ "python3" ]
CMD [ "app.py" ]
通过pip3 Frozen命令生成的需求
sp@sp-H81M-S:~/Desktop/flask_app$ sudo docker build -t fynd_task_app:latest .
Sending build context to Docker daemon 297.5MB
Step 1/8 : FROM ubuntu:18.04
---> a2a15febcdf3
Step 2/8 : RUN apt-get update -y && apt-get install -y python3-pip python3-dev
---> Using cache
---> d9f20954e3a8
Step 3/8 : COPY ./requirements.txt /app/requirements.txt
---> Using cache
---> 37dd9000750d
Step 4/8 : WORKDIR /app
---> Using cache
---> 9faca0a1b18b
Step 5/8 : RUN pip3 install -r requirements.txt
---> Using cache
---> 080a6573557e
Step 6/8 : COPY . /app
---> e3a4e06df17f
Step 7/8 : ENTRYPOINT [ "python3" ]
---> Running in d2f5f3063f28
Removing intermediate container d2f5f3063f28
---> 6d7e7b86fa12
Step 8/8 : CMD [ "app.py" ]
---> Running in fa149cc83cd1
Removing intermediate container fa149cc83cd1
---> 14e53a2402c8
Successfully built 14e53a2402c8
Successfully tagged fynd_task_app:latest
图像也成功构建,但是当我尝试在应提供烧瓶的5000端口上运行容器时
sp@sp-H81M-S:~/Desktop/flask_app$ sudo docker run -d -p 5000:5000 fynd_task_app:latest
739eddd6a289a6949a498829314ca01b3c6ef41b60e7a0ad6d66badbfd9e9379
我认为它的容器已退出, localhost:5000
这是app.py代码
import cv2 as cv
import argparse
import sys
import numpy as np
import os.path
import flask
import io
from PIL import Image
from keras.preprocessing.image import img_to_array
from keras.applications import imagenet_utils
from werkzeug.utils import secure_filename
from flask import render_template
confThreshold = 0.5
nmsThreshold = 0.4
inpWidth = 416
inpHeight = 416
image_name = "uploaded.jpg"
image_dir = str(os.getcwd())
classesFile = "coco.names";
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
modelConfiguration = "yolov3.cfg";
modelWeights = "yolov3.weights";
app = flask.Flask(__name__)
net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
def getOutputsNames(net):
layersNames = net.getLayerNames()
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
def drawPred(classId, conf, left, top, right, bottom):
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3)
label = '%.2f' % conf
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label)
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
print("Prediction Box: {}:{}:{}:{}".format(left,top,width,height))
@app.route('/')
def render_static():
return render_template('index.html')
@app.route("/predict", methods=["POST"])
def predict():
if flask.request.method == "POST":
if flask.request.files.get("image"):
file = flask.request.files["image"]
file.save(image_name)
frame = cv.imread(image_name)
print(frame.shape)
blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False)
net.setInput(blob)
outs = net.forward(getOutputsNames(net))
classIds = []
confidences = []
boxes = []
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
predictions = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
points = [left, top, left + width, top + height]
label = '%.2f' % confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label)
info = {"bounding_boxes" : points, "class" : label}
predictions.append(info)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.imwrite("tested.jpg", frame.astype(np.uint8))
return render_template("show.html", user_image = image_name,prediction = predictions)
# return flask.jsonify(predictions)
if __name__ == "__main__":
print("* Loading Keras model and Flask starting server...")
app.run()
问题出在哪里?
答案 0 :(得分:1)
默认情况下,它在localhost(在docker容器内部)上运行,将其更改为
app.run(host='0.0.0.0')
。这告诉您的Docker容器在公共IP上侦听(以便可以与外界的docker容器通信)。 (doc)