我想基于一个numpy 3d数组中的值创建一个numpy 2d数组,使用另一个numpy 2d数组确定在轴3中使用哪个元素。
import numpy as np
#--------------------------------------------------------------------
arr_3d = np.arange(2*3*4).reshape(2,3,4)
print('arr_3d shape=', arr_3d.shape, '\n', arr_3d)
arr_2d = np.array(([3,2,0], [2,3,2]))
print('\n', 'arr_2d shape=', arr_2d.shape, '\n', arr_2d)
res_2d = arr_3d[:, :, 2]
print('\n','res_2d example using element 2 of each 3rd axis...\n', res_2d)
res_2d = arr_3d[:, :, 3]
print('\n','res_2d example using element 3 of each 3rd axis...\n', res_2d)
结果...
arr_3d shape= (2, 3, 4)
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
arr_2d shape= (2, 3)
[[3 2 0]
[2 3 2]]
res_2d example using element 2 of each 3rd axis...
[[ 2 6 10]
[14 18 22]]
res_2d example using element 3 of each 3rd axis...
[[ 3 7 11]
[15 19 23]]
第2个示例结果显示了如果我使用轴3的第2个元素,然后使用第3个元素,则会得到什么。但是我想从arr_2d指定的arr_3d中获得该元素。所以...
- res_2d[0,0] would use the element 3 of arr_3d axis 3
- res_2d[0,1] would use the element 2 of arr_3d axis 3
- res_2d[0,2] would use the element 0 of arr_3d axis 3
etc
所以res_2d应该看起来像这样...
[[3 6 8]
[14 19 22]]
我尝试使用此行来获取arr_2d条目,但结果为4维数组,而我需要2维数组。
res_2d = arr_3d[:, :, arr_2d[:,:]]
答案 0 :(得分:1)
通过花式索引和广播得到的结果的形状是索引数组的形状。您需要为arr_3d
ax_0 = np.arange(arr_3d.shape[0])[:,None]
ax_1 = np.arange(arr_3d.shape[1])[None,:]
arr_3d[ax_0, ax_1, arr_2d]
Out[1127]:
array([[ 3, 6, 8],
[14, 19, 22]])
答案 1 :(得分:0)
In [107]: arr_3d = np.arange(2*3*4).reshape(2,3,4)
In [108]: arr_2d = np.array(([3,2,0], [2,3,2]))
In [109]: arr_2d.shape
Out[109]: (2, 3)
In [110]: arr_3d[[[0],[1]],[0,1,2],arr_2d]
Out[110]:
array([[ 3, 6, 8],
[14, 19, 22]])
[[0],[1]]
,[0,1,2]
相互广播以索引与(arr_2d)大小相同的(2,3)块。
ix_
可用于构造这两个索引:
In [114]: I,J = np.ix_(range(2), range(3))
In [115]: I,J
Out[115]:
(array([[0],
[1]]), array([[0, 1, 2]]))
In [116]: arr_3d[I, J, arr_2d]
Out[116]:
array([[ 3, 6, 8],
[14, 19, 22]])