应用多个条件级别分组

时间:2019-08-16 07:46:09

标签: python pandas pandas-groupby

问题1:

我有一个数据框架,其中包含两个月值列,分别为month1month2。如果month1列中的值不是NA,则按照amount列求和相应的month1值。如果month1列中的值为NA,则选择相应的'month2'值并在month1列中进行搜索并求和。

import pandas as pd
df = pd.DataFrame(
    {
        'month1': [1, 2, 'NA', 1, 4, 'NA', 'NA'],
        'month2': ['NA', 5, 1, 2, 'NA', 1, 3],
        'amount': [10, 20, 40, 50, 60, 70, 100]
    }
)

问题1的所需输出

    month1  month2  sum_amount
0     1.0     NaN      60
1     2.0     5.0      20
2     NaN     1.0      60
3     1.0     2.0      60
4     4.0     NaN      60
5     NaN     1.0      60
6     NaN     3.0      0

问题2:

我有一个数据框架,其中包含两个月值列,分别为month1month2。如果month1列中的值不是NA,则按照amount列求和相应的month2值。如果month1列中的值为NA,则选择month2的对应值并在month2列中搜索并执行求和。

import pandas as pd
df = pd.DataFrame(
    {
        'month1': [1, 2, 'NA', 1, 4, 'NA', 'NA'],
        'month2': ['NA', 5, 1, 2, 'NA', 1, 3],
        'amount': [10, 20, 40, 50, 60, 70, 100]
    }
)

问题2的所需输出

    month1  month2  sum_amount
0     1.0     NaN      110
1     2.0     5.0      50
2     NaN     1.0      110
3     1.0     2.0      110
4     4.0     NaN      0
5     NaN     1.0      110
6     NaN     3.0      100

2 个答案:

答案 0 :(得分:2)

我的解决方案不是优雅的解决方案,但它可以工作。看看。

两个问题的相同部分是:

In  [1]: import pandas as pd    
         df = pd.DataFrame(
             {
                 'month1': [1, 2, 'NA', 1, 4, 'NA', 'NA'],
                 'month2': ['NA', 5, 1,  2, 'NA', 1, 3],
                 'amount': [10, 20, 40, 50, 60, 70, 100],
             }
         )

         def make_sum_amount(row, amount_sum):
             if row['month1'] == 'NA':
                 if row['month2'] == 'NA':
                     return 0
                 return amount_sum.get(row['month2'], 0)
             return amount_sum.get(row['month1'], 0)

第一个问题的解决方案:

In  [2]: grouped_df = df[df['month1']!='NA'].groupby('month1').sum().reset_index()
         amount_sum = {k: v for k, v in zip(grouped_df['month1'], grouped_df['amount'])}
         df['sum_amount'] = df.apply(lambda row: make_sum_amount(row, amount_sum), axis=1)
         df

Out [2]:    month1  month2  amount  sum_amount
         0     1.0      NA      10          60
         1     2.0     5.0      20          20
         2      NA     1.0      40          60
         3     1.0     2.0      50          60
         4     4.0      NA      60          60
         5      NA     1.0      70          60
         6      NA     3.0     100           0

第二个问题的解决方案:

In  [3]: grouped_df = df[df['month2']!='NA'].groupby('month2').sum().reset_index()
         amount_sum = {k: v for k, v in zip(grouped_df['month2'], grouped_df['amount'])}
         df['sum_amount'] = df.apply(lambda row: make_sum_amount(row, amount_sum), axis=1)
         df

Out [3]:    month1  month2  amount  sum_amount
         0     1.0      NA      10         110
         1     2.0     5.0      20          50
         2      NA     1.0      40         110
         3     1.0     2.0      50         110
         4     4.0      NA      60           0
         5      NA     1.0      70         110
         6      NA     3.0     100         100

答案 1 :(得分:1)

首先将字符串NA替换为缺少的值,然后将sum聚合为Series。然后将Series.map用于新列,其中缺少不匹配值的值,因此将NaN替换为Series.fillna并映射另一列,最后将两列中的不匹配值替换为{{1} }:

0

第二次只更改同一解决方案中的列名称:

df = df.replace('NA', np.nan)
s = df.groupby('month1')['amount'].sum()
df['sum_amount'] = df['month1'].map(s).fillna(df['month2'].map(s)).fillna(0).astype(int)
print (df)
   month1  month2  amount  sum_amount
0     1.0     NaN      10          60
1     2.0     5.0      20          20
2     NaN     1.0      40          60
3     1.0     2.0      50          60
4     4.0     NaN      60          60
5     NaN     1.0      70          60
6     NaN     3.0     100           0