如何获取多个重叠矩形的边界框?如果有不重叠的矩形,则可能会有多个边界框。
我有一个包含 n 个代表矩形的对象的数组。每个对象都通过以下方式表示矩形: {左:178,顶部:67,宽度:20,高度:14} 。它们可以用其他方式表示,例如 leftX,topY, rightX,bottomY ;它可以轻松转换。
我不是在寻找非最大抑制算法。文献中是否有特定的算法可以实现这一目标?之后,我将尝试在JavaScript中对其进行转换。
编辑:AuxTaco solution可以正常工作,只要矩形一个接一个地重叠即可。如果按如下图所示的指定顺序绘制矩形,则会得到3个边界区域。
矩形1和2重叠,并且其边界框与矩形3重叠;但是我对这种特殊情况不感兴趣,可以将3视为一个单独的矩形。
答案 0 :(得分:2)
我不知道特定算法的名称,但是可以将其简化为2D碰撞检测:
function combineRects (rect1, rect2) {
return a rectangle object representing the bounding box of the union of rect1 and rect2;
}
function doRectsCollide (rect1, rect2) {
return true if rect1 and rect2 intersect;
}
const rectangles = [ your rectangle objects ];
const boundingBoxes = rectangles.reduce((boxes, rect) => {
// Start with an empty array of bounding boxes.
// For each rectangle, find the bounding box it intersects.
const boundingBoxIndex = boxes.findIndex(doRectsCollide.bind(null, rect));
if (boundingBoxIndex === -1) {
// If there is none, push the rectangle into the bounding box array.
boxes.push(rect);
return boxes;
} else {
// Otherwise,
// replace the intersected bounding box with a new box that includes the rectangle.
boxes[boundingBoxIndex] = combineRects(boxes[boundingBoxIndex], rect);
return boxes;
}
}, []);
这在您的示例中非常有效(每个矩形最多可与3个矩形进行比较),但在最坏的情况下(没有重叠的矩形)会减慢到O(n ^ 2)。可以通过使用比原始数组更好的方法来存储边界框来改进它。
答案 1 :(得分:1)
因此,我提出了一种方法,该方法应该对您有用。方法摘要如下
现在输入代码
function doRectsCollide(a, b) {
return !(
((a.top + a.height) < (b.top)) ||
(a.top > (b.top + b.height)) ||
((a.left + a.width) < b.left) ||
(a.left > (b.left + b.width))
);
}
var collisions = [];
var rectangles = [
{left: 74, top: 66.89999389648438, width: 80.5, height: 71},
{left: 111.5, top: 95.89999389648438, width: 125, height: 84},
{left: 177, top: 120.89999389648438, width: 168.5, height: 90},
{left: 93, top: 258.8999938964844, width: 81.5, height: 81},
{left: 265.5, top: 320.8999938964844, width: 92, height: 83},
{left: 393, top: 210.89999389648438, width: 88.5, height: 95}
];
for (rectangle of rectangles) {
var collisions_indexes = [];
index = 0;
for (currentColission of collisions) {
for (rect of currentColission) {
if (doRectsCollide(rect, rectangle) === true) {
collisions_indexes.push(index)
break
}
}
index++;
}
if (collisions_indexes.length == 0) {
// this rectangle collides with none and should be appened to collisions array
collisions.push([rectangle])
} else if (collisions_indexes.length >= 1) {
// there is just one collision, we can merge the same
collisions[collisions_indexes[0]].push(rectangle)
// now we have got multiple collisions, so we need to merge all the collisions with the first one
// and remove the colission ones
for (var i = 1; i < collisions_indexes.length; i++) {
// we use - (i - 1) because we will remove the collision once we merge it
// so after each merge the collision index actually shift by -1
var new_index = collisions_indexes[i] - (i - 1);
// extend the first colliding array with the new collision match
collisions[collisions_indexes[0]].push(...collisions[new_index])
// now we remove the element from our collision since it is merged with some other
collisions.splice(new_index, 1);
}
}
}
console.log(JSON.stringify(collisions, null, 2));
//now we have a array of collision which will have all colliding ones
for (collision of collisions) {
// compute bounding rectangle from rectangles array in collision
}
现在相同的输出是
[
[
{"left":74,"top":66.89999389648438,"width":80.5,"height":71},
{"left":111.5,"top":95.89999389648438,"width":125,"height":84},
{"left":177,"top":120.89999389648438,"width":168.5,"height":90}
],
[{"left":93,"top":258.8999938964844,"width":81.5,"height":81}],
[{"left":265.5,"top":320.8999938964844,"width":92,"height":83}],
[{"left":393,"top":210.89999389648438,"width":88.5,"height":95}]
]