我想使一列与混乱的时间戳记保持一致。将它们全部转换为unix或可读。请告诉我是否有简便的方法。
te[13090:13110]
13090 1561571794
13091 1561571957
13092 1561572119
13093 1561572280
13094 1561572442
13095 1561572606
13096 1561572767
13097 1561572931
13098 1561573095
13099 1561573258
13100 1561573419
13101 2019-06-26 18:27:44.000000
13102 2019-06-26 18:30:36.000000
13103 2019-06-26 18:33:27.000000
13104 2019-06-26 18:36:15.000000
13105 2019-06-26 18:39:05.000000
13106 2019-06-26 18:41:52.000000
13107 2019-06-26 18:44:37.000000
13108 2019-06-26 18:47:26.000000
13109 2019-06-26 18:50:26.000000
Name: timestamp, dtype: object
如果您想重现问题的列表
['1561571794', '1561571957', '1561572119', '1561572280', '1561572442', '1561572606', '1561572767', '1561572931', '1561573095', '1561573258', '1561573419', '2019-06-26 18:27:44.000000', '2019-06-26 18:30:36.000000', '2019-06-26 18:33:27.000000', '2019-06-26 18:36:15.000000', '2019-06-26 18:39:05.000000', '2019-06-26 18:41:52.000000', '2019-06-26 18:44:37.000000', '2019-06-26 18:47:26.000000', '2019-06-26 18:50:26.000000']
答案 0 :(得分:0)
您使用不同的格式对其进行了两次解析:
df = pd.DataFrame({
'DateTimeStr': ['1561571794', '1561571957', '1561572119', '1561572280', '1561572442', '1561572606', '1561572767', '1561572931', '1561573095', '1561573258', '1561573419', '2019-06-26 18:27:44.000000', '2019-06-26 18:30:36.000000', '2019-06-26 18:33:27.000000', '2019-06-26 18:36:15.000000', '2019-06-26 18:39:05.000000', '2019-06-26 18:41:52.000000', '2019-06-26 18:44:37.000000', '2019-06-26 18:47:26.000000', '2019-06-26 18:50:26.000000']
})
d1 = pd.to_datetime(df['DataTimeStr'], format='%Y-%m-%d %H:%M:%S.%f', errors='coerce')
idx = d1[d1.isna()].index
d2 = pd.to_datetime(df.loc[idx, 'TimeStr'].astype('int'), unit='s')
df['DateTime'] = d1.combine_first(d2)