我需要在PyTorch中使用等效的tf.dynamic_partition
。 PyTorch或其他库中是否有任何具有类似功能的东西,还是有一种简单聪明的方法为PyTorch编写代码并快速工作?
答案 0 :(得分:0)
是的,您可以迭代地为唯一索引创建布尔掩码:
import torch
# partitions should be integer-like types
def dynamic_partition(
data: torch.Tensor, partitions: torch.Tensor, num_partitions=None
):
assert len(partitions.shape) == 1, "Only one dimensional partitions supported"
assert (
data.shape[0] == partitions.shape[0]
), "Partitions requires the same size as data"
if num_partitions is None:
num_partitions = max(torch.unique(partitions))
return [data[partitions == i] for i in range(num_partitions)]
摘自tf.dynamic_partition
文档的示例:
partitions = torch.tensor([0, 0, 1, 1, 0])
num_partitions = 2
data = torch.tensor([10, 20, 30, 40, 50])
dynamic_partition(data, partitions, num_partitions)
给出的结果与示例相同,即:
[torch.tensor([10, 20, 50]), torch.tensor([30, 40])]