我建立了一个具有自定义图层的Keras模型,并通过回调.h5
将其保存到ModelCheckPoint
文件中。
在训练后尝试加载此模型时,出现以下错误消息:
__init__() missing 1 required positional argument: 'pool_size'
这是自定义层及其__init__
方法的定义:
class MyMeanPooling(Layer):
def __init__(self, pool_size, axis=1, **kwargs):
self.supports_masking = True
self.pool_size = pool_size
self.axis = axis
self.y_shape = None
self.y_mask = None
super(MyMeanPooling, self).__init__(**kwargs)
这是将图层添加到模型中的方法:
x = MyMeanPooling(globalvars.pool_size)(x)
这是我加载模型的方式:
from keras.models import load_model
model = load_model(model_path, custom_objects={'MyMeanPooling': MyMeanPooling})
这些是完整的错误消息:
Traceback (most recent call last):
File "D:/My Projects/Attention_BLSTM/script3.py", line 9, in <module>
model = load_model(model_path, custom_objects={'MyMeanPooling': MyMeanPooling})
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\saving.py", line 225, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\saving.py", line 458, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\layers\__init__.py", line 55, in deserialize
printable_module_name='layer')
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\utils\generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\network.py", line 1022, in from_config
process_layer(layer_data)
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\network.py", line 1008, in process_layer
custom_objects=custom_objects)
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\layers\__init__.py", line 55, in deserialize
printable_module_name='layer')
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\utils\generic_utils.py", line 147, in deserialize_keras_object
return cls.from_config(config['config'])
File "D:\ProgramData\Anaconda3\envs\tf\lib\site-packages\keras\engine\base_layer.py", line 1109, in from_config
return cls(**config)
TypeError: __init__() missing 1 required positional argument: 'pool_size'
答案 0 :(得分:0)
摘自“ LiamHe在2017年9月27日发表评论”的以下问题:https://github.com/keras-team/keras/issues/4871。
我今天遇到了同样的问题:** TypeError:init()缺少1个必需的位置参数**。这是我解决问题的方法:(Keras 2.0.2)
def get_config(self):
config = super().get_config()
config['pool_size'] = # say self._pool_size if you store the argument in __init__
return config
答案 1 :(得分:0)
实际上,我认为您无法加载此模型。
最可能的问题是您没有在图层中实现get_config()
方法。此方法返回应保存的配置值字典:
def get_config(self):
config = {'pool_size': self.pool_size,
'axis': self.axis}
base_config = super(MyMeanPooling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
将这种方法添加到图层后,您必须重新训练模型,因为先前保存的模型没有将此图层的配置保存到其中。这就是为什么您不能加载它的原因,进行此更改后需要重新培训。
答案 2 :(得分:0)
如果您没有足够的时间以Matias Valdenegro的解决方法来重新训练模型。您可以在类 MyMeanPooling 中设置 pool_size 的默认值,如以下代码所示。请注意, pool_size 的值应与训练模型时的值一致。然后可以加载模型。
class MyMeanPooling(Layer):
def __init__(self, pool_size, axis=1, **kwargs):
self.supports_masking = True
self.pool_size = 2 # The value should be consistent with the value while training the model
self.axis = axis
self.y_shape = None
self.y_mask = None
super(MyMeanPooling, self).__init__(**kwargs)