我正在尝试基于TF2.0渴望模式执行精确的GP回归,基于 https://colab.research.google.com/github/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Gaussian_Process_Regression_In_TFP.ipynb
amplitude = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1., name='amplitude', dtype=np.float64))
)
length_scale = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1., name='length_scale', dtype=np.float64))
)
observation_noise_variance = (
np.finfo(np.float64).tiny +
tf.nn.softplus(tf.Variable(initial_value=1e-6,
name='observation_noise_variance',
dtype=np.float64))
)
kernel = tfk.ExponentiatedQuadratic(amplitude, length_scale)
gp = tfd.GaussianProcess(
kernel=kernel,
index_points=tf.expand_dims(x, 1),
observation_noise_variance=observation_noise_variance
)
neg_log_likelihood = lambda: -gp.log_prob(y)
optimizer = tf.optimizers.Adam(learning_rate=.01)
num_iters = 1000
lls_ = np.zeros(num_iters, np.float64)
for i in range(num_iters):
lls_[i] = neg_log_likelihood()
optimizer.minimize(neg_log_likelihood, var_list=[amplitude, length_scale, observation_noise_variance])
但是优化失败:
'tensorflow.python.framework.ops.EagerTensor'对象没有属性'_in_graph_mode'
如果我将幅度,length_scale和observation_noise_variance都移动到tf.Variable,例如:
amplitude = tf.Variable(initial_value=1., name='amplitude', dtype=np.float64)
amplitude_ = (
np.finfo(np.float64).tiny +
tf.nn.softplus(amplitude)
)
优化失败:
ValueError:没有为任何变量提供渐变:['amplitude:0','length_scale:0','observation_noise_variance:0']。
我在做什么错了?
答案 0 :(得分:0)
当前急切模式存在问题:
https://groups.google.com/a/tensorflow.org/d/msg/tfprobability/IlhL-fcv3yc/jpQc4ogcFwAJ
解决方法是显式使用GradientTape:
amplitude_ = tf.Variable(initial_value=1., name='amplitude_', dtype=np.float64)
length_scale_ = tf.Variable(initial_value=1., name='length_scale_', dtype=np.float64)
observation_noise_variance_ = tf.Variable(initial_value=1e-6,
name='observation_noise_variance_',
dtype=np.float64)
@tf.function
def neg_log_likelihood():
amplitude = np.finfo(np.float64).tiny + tf.nn.softplus(amplitude_)
length_scale = np.finfo(np.float64).tiny + tf.nn.softplus(length_scale_)
observation_noise_variance = np.finfo(np.float64).tiny + tf.nn.softplus(observation_noise_variance_)
kernel = tfk.ExponentiatedQuadratic(amplitude, length_scale)
gp = tfd.GaussianProcess(
kernel=kernel,
index_points=tf.expand_dims(x, 1),
observation_noise_variance=observation_noise_variance
)
return -gp.log_prob(y)
optimizer = tf.optimizers.Adam(learning_rate=.01)
num_iters = 1000
nlls = np.zeros(num_iters, np.float64)
for i in range(num_iters):
nlls[i] = neg_log_likelihood()
with tf.GradientTape() as tape:
loss = neg_log_likelihood()
grads = tape.gradient(loss, [amplitude_, length_scale_, observation_noise_variance_])
optimizer.apply_gradients(zip(grads, [amplitude_, length_scale_, observation_noise_variance_]))