我有一个看起来像这样的数据框:
if (measureTitle.clientWidth > 585) {
document.getElementById("titlePixels").style.color = "red";
}
else if (measureTitle.clientWidth < 585)
{
document.getElementById("titlePixels").style.color = null;
}
document.getElementById("titleText").innerText = inputTitle;
document.getElementById("titlePixels").innerText = width;
我想创建一个新列,其中包含 X Y Corr_Value
0 51182 51389 1.00
1 51182 50014 NaN
2 51182 50001 0.85
3 51182 50014 NaN
和X
列的值。想法是遍历行,如果Y
不为null,则新列应显示:
Corr_Value
例如,对于第一行,结果应为:
Solving (X column value) will solve (Y column value) at (Corr_value column)% probability.
这是我写的代码:
Solving 51182 will solve 51389 with 100% probability.
dfs = []
for i in df1.iterrows():
if ([df1['Corr_Value']] != np.nan):
a = df1['X']
b = df1['Y']
c = df1['Corr_Value']*100
df1['Remarks'] = (f'Solving {a} will solve {b} at {c}% probability')
dfs.append(df1)
是存储df1
,X
和Y
数据的数据框。
但是似乎有一个问题,因为我得到的结果看起来像这样:
但是结果应该像这样:
如果您可以帮助我获得理想的结果,那就太好了。
答案 0 :(得分:3)
使用DataFrame.dropna
删除丢失的行,并使用DataFrame.apply
将f-string
应用于自定义输出字符串:
f = lambda x: f'Solving {int(x["X"])} will solve {int(x["Y"])} at {int(x["Corr_Value"] * 100)}% probability.'
df['Remarks'] = df.dropna(subset=['Corr_Value']).apply(f,axis=1)
print (df)
X Y Corr_Value Remarks
0 51182 51389 1.00 Solving 51182 will solve 51389 at 100% probabi...
1 51182 50014 NaN NaN
2 51182 50001 0.85 Solving 51182 will solve 50001 at 85% probabil...
3 51182 50014 NaN NaN
答案 1 :(得分:2)
您还可以在以下位置使用numpy:
import numpy as np
df['Remarks'] = np.where(df.Corr_Value.notnull(), 'Solving ' + df['X'].astype(str) + ' will solve ' + df['Y'].astype(str) + ' with ' + (df['Corr_Value'] * 100).astype(str) + '% probability', df['Corr_Value'])
输出:
X Y Corr_Value Remarks
0 51182 51389 1.00 Solving 51182 will solve 51389 with 100.0% pro...
1 51182 50014 NaN NaN
2 51182 50001 0.85 Solving 51182 will solve 50001 with 85.0% prob...
3 51182 50014 NaN NaN
答案 2 :(得分:1)
只需尝试:
dfs = []
for i, r in df1.iterrows():
if (r['Corr_Value'] != np.nan):
a = r['X']
b = r['Y']
c = r['Corr_Value']*100
df1.at[i, 'Remarks'] = "Solving "+ str(a) + " will solve " + str(b) + " at " + str(c) + " % probability"
我认为问题与使用df1
而不是当前行有关。