我正在尝试使用多边形shapefile或范围将多个NetCDF文件中的变量“ swh_ku”及其对应的纬度和经度值提取到csv文件中。我正在使用Jason-1全局测高测绘数据,但是我只需要shapefile表示的域的数据。我只需要一些代码行的帮助即可完成下面的工作代码,因此我只能提取我感兴趣的区域的数据。
不幸的是,我尝试了多个软件应用程序,例如QGIS,ESA SNAP,Broadview雷达测高仪工具箱(BRAT),但没有成功,因为我找不到自动对数百个NetCDF文件进行提取的方法。因此,我求助于我刚刚接触的新代码,但在阅读其他文章后设法使其正常工作。我尝试使用#extract或#mask函数以栅格或砖块形式打开文件,因为它们看起来更简单,但我无法设法解决它们。
链接到数据:https://drive.google.com/drive/folders/1d_XVYFe__-ynxbJNUwlyl74SPJi8GybR?usp=sharing
library(ncdf4)
library(rgdal)
library(raster)
my_read_function <- function(ncname) {
setwd("D:/Jason-1/cycle_030")
bs_shp=readOGR("D:/Black_Sea.shp")
e<-extent(bs_shp)
ncfname = ncname
names(ncin[['var']])
dname = "swh_ku"
ncin = nc_open(ncfname)
print(ncin)
vars<-(names(ncin[['var']]))
vars
lon <- ncvar_get(ncin, "lon")
nlon <- dim(lon)
head(lon)
lat <- ncvar_get(ncin, "lat", verbose = F)
nlat <- dim(lat)
head(lat)
print(c(nlon, nlat))
sm_array <- ncvar_get(ncin,dname)
dlname <- ncatt_get(ncin,dname,"long_name")
dunits <- ncatt_get(ncin,dname,"units")
fillvalue <- ncatt_get(ncin,dname,"_FillValue")
dim(sm_array)
ls()
sm.slice <- sm_array[]
sm.vec <- as.vector(sm.slice)
length(sm.vec)
lonlat <- expand.grid(lon, lat)
sm.df01 <- data.frame(cbind(lonlat, sm.vec))
names(sm.df01) <- c("lon", "lat", paste(dname, sep = "_"))
head(na.omit(sm.df01), 20)
csvfile <- paste0(ncname,".csv")
write.table(na.omit(sm.df01), csvfile, row.names = FALSE, sep = ",")
}
my_files <- list.files("D:/Jason-1/cycle_030/")
lapply(my_files, my_read_function)
答案 0 :(得分:0)
好像您的数据没有网格化。
library(ncdf4)
library(raster)
bs <- shapefile("Black_Sea.shp")
# simplify so that the data will look better later
bs <- as(bs, "SpatialPolygons")
f <- list.files("cycle_022", pattern="nc$", full=TRUE)
循环将从此处开始
ncfname = f[1]
dname = "swh_ku"
ncin = nc_open(ncfname)
lon <- ncvar_get(ncin, "lon")
lat <- ncvar_get(ncin, "lat", verbose = F)
sm_array <- ncvar_get(ncin, dname)
xyz <- na.omit(cbind(lon, lat, sm_array))
p <- SpatialPoints(xyz[,1:2], proj4string=crs(bs))
p <- SpatialPointsDataFrame(p, data.frame(xyz))
x <- intersect(p, bs)
x
的点与黑海相交
plot(bs)
points(x)
head(x@data)