根据一列获取不同的行

时间:2019-08-13 11:03:40

标签: scala dataframe apache-spark distinct

+---------------+---------+-----------------+-------+-------------------+-----------+--------------------+--------------------+---------------+-------+-------------------+-------------------+
|ID_NOTIFICATION|ID_ENTITE|ID_ENTITE_GARANTE|CD_ETAT|DT_ETAT            |CD_ANOMALIE|CD_TYPE_DESTINATAIRE|CD_TYPE_EVENEMENT   |CD_SYS_APPELANT|TYP_MVT|DT_DEBUT           |DT_FIN             |
+---------------+---------+-----------------+-------+-------------------+-----------+--------------------+--------------------+---------------+-------+-------------------+-------------------+
|3110305        |GNE      |GNE              |AT     |2019-06-12 00:03:14|null       |null                |REL_CP_ULTIME_PAPIER|SIGMA          |C      |2019-06-12 00:03:22|2019-06-12 00:03:32|
|3110305        |GNE      |GNE              |AN     |2019-06-12 00:03:28|017        |IDGRC               |REL_CP_ULTIME_PAPIER|SIGMA          |M      |2019-06-12 00:03:22|2019-06-12 15:08:43|
|3110305        |GNE      |GNE              |AN     |2019-06-12 00:03:28|017        |IDGRC               |REL_CP_ULTIME_PAPIER|SIGMA          |M      |2019-06-12 00:03:22|2019-06-12 15:10:06|
|3110305        |GNE      |GNE              |AN     |2019-06-12 15:10:02|017        |IDGRC               |REL_CP_ULTIME_PAPIER|SIGMA          |M      |2019-06-12 00:03:22|2019-06-12 15:10:51|
|3110305        |GNE      |GNE              |AN     |2019-06-12 15:10:02|017        |IDGRC               |REL_CP_ULTIME_PAPIER|SIGMA          |M      |2019-06-12 00:03:22|2019-06-12 15:11:35|

有没有一种方法可以使每个不同的CD_ETAT列都排成一行?在这种情况下,它将是前两行。

类似于this SQL solution,但在Scala中请使用DF函数。谢谢

2 个答案:

答案 0 :(得分:2)

您可以使用partitionBy CD_ETAT进行窗口功能,然后选择orderBy以获取第一个

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

val window = Window.partitionBy("CD_ETAT").orderBy("DT_ETAT")

df.withColumn("row_num", row_number().over(window))
  .filter($"row_num" === 1)
  .drop("row_num")

输出:

+---------------+---------+-----------------+-------+-------------------+-----------+--------------------+--------------------+---------------+-------+-------------------+-------------------+
|ID_NOTIFICATION|ID_ENTITE|ID_ENTITE_GARANTE|CD_ETAT|            DT_ETAT|CD_ANOMALIE|CD_TYPE_DESTINATAIRE|   CD_TYPE_EVENEMENT|CD_SYS_APPELANT|TYP_MVT|           DT_DEBUT|             DT_FIN|
+---------------+---------+-----------------+-------+-------------------+-----------+--------------------+--------------------+---------------+-------+-------------------+-------------------+
|        3110305|      GNE|              GNE|     AT|2019-06-12 00:03:14|       null|                null|REL_CP_ULTIME_PAPIER|          SIGMA|      C|2019-06-12 00:03:22|2019-06-12 00:03:32|
|        3110305|      GNE|              GNE|     AN|2019-06-12 00:03:28|        017|               IDGRC|REL_CP_ULTIME_PAPIER|          SIGMA|      M|2019-06-12 00:03:22|2019-06-12 15:08:43|
+---------------+---------+-----------------+-------+-------------------+-----------+--------------------+--------------------+---------------+-------+-------------------+-------------------+

答案 1 :(得分:0)

如果您想要数据帧的不同行,则解决方案可以直接使用.distinct()

.distinct()返回数据帧的不同行,但是在您的情况下,由于只有其他两行(DT_ETAT,DT_FIN)具有不同的值,因此您将没有只有两行的数据帧。

针对您的情况,也许一个简单的解决方案是选择不包含(DT_ETAT,DT_FIN)的列,然后使用.distinct()

val new_df=df.select("ID_NOTIFICATION", "ID_ENTITE", "ID_ENTITE_GARANTE", "CD_ETAT", ..).distinct()
# Take a look in the results
new_df.show()