ValueError:系列的真值不明确(API NaN处理)

时间:2019-08-13 07:50:37

标签: python pandas dataframe valueerror

我正在django-rest-framework中开发一个API,根据输入参数,您会得到不同的响应。 该API正在计算指标,这些指标将根据数据库返回给用户。

我编写了一个函数来处理NaN值,如下所示:

def nan_to_none(value):
    if not isinstance(value, str) and value is not None and np.isnan(value):
        return None
    return value

这是错误弹出的响应元素:

 "prog": nan_to_none(row["average_items_prog"])

这是引起问题的SQL行:

  ((((coalesce(qte_art, 0) / nullif(nb_client, 0)) - (coalesce(qte_art_n1, 0) / nullif(nb_client_n1, 0))) / (coalesce(qte_art_n1, 0) / nullif(nb_client_n1, 0))) * 100) as average_items_prog,

这是错误消息:

  File "C:\Users\wdc\views.py", line 464, in get
    "prog": nan_to_none(row["average_items_prog"])},
  File "C:\Users\wdc\views.py", line 28, in nan_to_none
    if not isinstance(value, str) and value is not None and np.isnan(value):
  File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py", line 1478, in __nonzero__
    .format(self.__class__.__name__))
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

我不知道如何解决这个问题!

1 个答案:

答案 0 :(得分:2)

尝试更改:

"prog": nan_to_none(row["average_items_prog"])

Series.apply

"prog": row["average_items_prog"].apply(nan_to_none)

测试:

s = pd.Series(['a', 0, 0, 1, None, np.nan])
print (s)
0       a
1       0
2       0
3       1
4    None
5     NaN
dtype: object

def nan_to_none(value):
    if not isinstance(value, str) and value is not None and np.isnan(value):
        return None
    return value

print (s.apply(nan_to_none))
#in your solution
#"prog": row["average_items_prog"].apply(nan_to_none)
0       a
1       0
2       0
3       1
4    None
5    None
dtype: object

似乎也应该通过测试np.nan != np.nan来简化解决方案:

def nan_to_none(value):
    if value != value:
        return None
    return value

print (s.apply(nan_to_none))
#in your solution
#"prog": row["average_items_prog"].apply(nan_to_none)
0       a
1       0
2       0
3       1
4    None
5    None
dtype: object

或将None设置为Series.mask

print (s.mask(s.isna(), None))
#in your solution
#"prog": row["average_items_prog"].mask(s.isna(), None)
0       a
1       0
2       0
3       1
4    None
5    None
dtype: object