我有以下数据框:
import iconv from 'iconv-lite';
import { Buffer } from 'buffer';
function fetchXML() {
return new Promise((resolve, reject) => {
const request = new XMLHttpRequest();
request.onload = () => {
if (request.status === 200) {
resolve(iconv.decode(Buffer.from(request.response), 'iso-8859-1'));
} else {
reject(new Error(request.statusText));
}
};
request.onerror = () => reject(new Error(request.statusText));
request.responseType = 'arraybuffer';
request.open('GET', 'http://www.band.uol.com.br/rss/colunista_64.xml');
request.setRequestHeader('Content-type', 'text/xml; charset=ISO-8859-1');
request.send();
});
}
fetchXML().then(response =>
console.log(response)
);
如果要创建另外一个名为“ price_float”的列,该列与“ price”相同,但带有浮点数(稍后使用不支持Decimal的matplotlib进行绘制)。
我尝试过:
buffer
但是我得到了
stream
答案 0 :(得分:1)
只需模拟您的示例DataFrame:
>>> df2
price tpo tpo_count
0 1.4334 A 1
1 1.4335 BC 2
2 1.4336 BCD 3
3 1.4337 D 1
>>> print(df2.dtypes)
price object
tpo object
tpo_count int64
dtype: object
>>> df2['price_float'] = df2['price'].astype(float)
>>> df2
price tpo tpo_count price_float
0 1.4334 A 1 1.4334
1 1.4335 BC 2 1.4335
2 1.4336 BCD 3 1.4336
3 1.4337 D 1 1.4337
现在您已经创建了新的float
列。.
>>> print(df2.dtypes)
price object
tpo object
tpo_count int64
price_float float64
dtype: object
答案 1 :(得分:0)
您可以使用astype函数:
color = Sex