我有两个数据表,city_pop
和city_sub
。 city_pop
是具有平均人口数但缺少某些值的城市的列表。 city_sub
表提供了两个可能的city_id
(sub_1
和sub_2
),其中的avg_pop
可用于在NA
中填充city_pop
。 sub_1
和sub_2
将按照该优先顺序使用。仅NA
中的avg_pop
值需要替换。
如何在不使用for循环的情况下做到这一点?
city_id = c(1, 2, 3, 4, 5, 6)
avg_pop = c(100, NA, NA, 300, 400, NA)
city_pop = data.table(city_id, avg_pop)
city_id avg_pop
1: 1 100
2: 2 NA
3: 3 NA
4: 4 300
5: 5 400
6: 6 NA
sub_1=c(2,1,4,3,1,3)
sub_2=c(5,5,6,6,2,4)
city_sub =data.table(city_id,sub_1,sub_2)
city_id sub_1 sub_2
1: 1 2 5
2: 2 1 5
3: 3 4 6
4: 4 3 6
5: 5 1 2
6: 6 3 4
预期输出-
city_id avg_pop
1 1 100
2 2 100
3 3 300
4 4 300
5 5 400
6 6 300
答案 0 :(得分:3)
这是dplyr
使用coalesce
的一种方式,该方式使用第一个非NA
值。我创建了一个单独的列avg_pop2
,因为在这种情况下,此列似乎更安全,而且可以轻松验证结果。
city_pop %>%
left_join(city_sub, by = "city_id") %>%
mutate(
avg_pop2 = coalesce(
avg_pop, avg_pop[match(sub_1, city_id)], avg_pop[match(sub_2, city_id)]
)
)
city_id avg_pop sub_1 sub_2 avg_pop2
1 1 100 2 5 100
2 2 NA 1 5 100
3 3 NA 4 6 300
4 4 300 3 6 300
5 5 400 1 2 400
6 6 NA 3 4 300
答案 1 :(得分:1)
一种方法是查找sub_1,然后查找其avg_pop;然后对sub_2做同样的事情:
city_pop[is.na(avg_pop), avg_pop :=
city_pop[.(city_sub[.SD, on=.(city_id), x.sub_1]), on=.(city_id), x.avg_pop]
]
city_pop[is.na(avg_pop), avg_pop :=
city_pop[.(city_sub[.SD, on=.(city_id), x.sub_2]), on=.(city_id), x.avg_pop]
]
这种方法有些复杂,不适用于更一般的示例。图论方法可能更有意义,例如,如果city_sub看起来像这样:
city_id sub_1
1: 1 5
5: 5 3
假设1和5都缺少数据。我们希望看到5填充3,然后1填充5,但这需要知道填充的顺序。我想,使用有向图,您可以找出正确的遍历顺序,尽管我没有仔细考虑所有细节。
答案 2 :(得分:1)
另一种可能的方法是将city_sub
转换为长格式,并在使用滚动连接之前将city_id
调整到小数位:
#convert into long format
newpop <- melt(city_sub, measure.vars=patterns("^sub_"), variable.factor=FALSE)[,
#tweak the city_id slightly to show order of preference
city_id := as.numeric(paste0(city_id, ".", substring(variable, nchar(variable))))][
#look up average population
city_pop, on=.(value=city_id), new_pop := i.avg_pop][
#remove cities without population
!is.na(new_pop)]
newpop
# city_id variable value new_pop
#1: 2.1 sub_1 1 100
#2: 3.1 sub_1 4 300
#3: 5.1 sub_1 1 100
#4: 1.2 sub_2 5 400
#5: 2.2 sub_2 5 400
#6: 6.2 sub_2 4 300
#rolling join
city_pop[is.na(avg_pop), avg_pop :=
newpop[copy(.SD), on=.(city_id), roll=-Inf, x.new_pop]]
输出:
city_id avg_pop
1: 1 100
2: 2 100
3: 3 300
4: 4 300
5: 5 400
6: 6 300
数据:
library(data.table)
city_pop = data.table(city_id=1:6, avg_pop=c(100, NA, NA, 300, 400, NA))
city_sub = data.table(city_id=1:6, sub_1=c(2,1,4,3,1,3), sub_2=c(5,5,6,6,2,4))