当我将热编码的标签作为训练和验证数据传递到tensorflow keras的model.fit()
函数时,指标tf.keras.metrics.TruePositives()
返回错误的值。
我正在运行Tensorflow 2.0。
例如,如果这是我的代码:
model.compile(optimizer, 'binary_crossentropy',
['accuracy', tf.keras.metrics.TruePositives()])
history = model.fit(train_data, train_labels_binary, batch_size=32, epochs=30,
validation_data=(val_data, val_labels_binary),
callbacks=[early_stopping])
train_labels_binary
是这个:array([[1, 0], [1, 0], [0, 1]])
,结果y_pred
是array([[1, 0], [1, 0], [0, 1]])
然后tf.keras.metrics.TruePositives()
应该返回1,但它返回3。
任何帮助将不胜感激!
答案 0 :(得分:0)
好吧,我做了一些更多的实验,当输入不是1热编码并且只有1个输出神经元时,它是固定的。因此,如果我们更改以下两行,则所有指标均能正常运行:
此:train_labels = np.eye(2)[np.random.randint(0, 2, size=(10, 1)).reshape(-1)]
收件人:train_labels = np.random.randint(0, 2, size=(10, 1))
和
此:model.add(layers.Dense(units=2, activation='sigmoid'))
收件人:model.add(layers.Dense(units=1, activation='sigmoid'))