如何在转移学习中使用初始层

时间:2019-08-10 07:38:13

标签: python machine-learning deep-learning

我想进行转移学习,我正在加载这些权重文件,但是现在我迷失了如何使用其图层来训练我的自定义模型。 任何帮助将不胜感激 下面是我尝试的示例代码:

local_weights_file= '/tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'

pre_trained_model = InceptionV3(input_shape = (150, 150, 3),
include_top = False,
weights = None)
​
pre_trained_model.load_weights(local_weights_file)
​
for layer in pre_trained_model.layers:
layer.trainable = False

1 个答案:

答案 0 :(得分:1)

您需要将最后一层的输出输入到最终模型中。 这样的事情应该起作用

last_layer = pre_trained_model.get_layer('mixed7')
last_output = last_layer.output



# Flatten the output layer to 1 dimension
x = layers.Flatten()(last_output)
# Add a fully connected layer with 1,024 hidden units and ReLU activation
x = layers.Dense(1024, activation='relu')(x)
# Add a dropout rate of 0.2
x = layers.Dropout(0.2)(x)                  
# Add a final sigmoid layer for classification
x = layers.Dense  (1, activation='sigmoid')(x)           

model = Model( pre_trained_model.input, x)