Keras:模型总是预测相似的结果

时间:2019-08-07 18:43:01

标签: python keras neural-network

所以我目前正在用Python进行我的第一个AI / Keras项目,但是我的NN并没有显着改变预测输出:

import keras, numpy, random


# Creating the Model
input = keras.Input(shape=(8,), name="Input")
dense = keras.layers.Dense(25, activation="sigmoid", name="Middle")(input)
select = keras.layers.Dense(5, activation="sigmoid", name="Select")(dense)
model = keras.models.Model(inputs=input, outputs=select)


def predict(data):
    data = numpy.array([data])
    data = data / 6         # Normalizing

    prediction = model.predict(data)

    for x in prediction:
        print(x)


for _ in range(30):
    data = [random.randint(1, 6) for _ in range(8)]
    predict(data)

您可能已经看到,这只是整个代码的简化版本(这就是为什么预测什么也没发生的原因)。我在大型模型中遇到了这个问题,并试图简化它,但即使这样,问题仍然存在。

以下是示例输出:

[0.45357195 0.5101176  0.6066073  0.59616214 0.32346085]
[0.45234042 0.50832504 0.61470693 0.5896992  0.31719455]
[0.4485785  0.51558554 0.60924697 0.6041078  0.32343972]
[0.43296802 0.4978232  0.60654384 0.5980472  0.32416025]
[0.46071726 0.51882887 0.61999756 0.5960711  0.32239592]
[0.4497589  0.51017994 0.6150334  0.5961156  0.328219  ]
[0.44080874 0.5004228  0.6147976  0.5961118  0.3279655 ]
[0.4618538  0.5148883  0.6156607  0.5945767  0.32228172]
[0.44991705 0.51072496 0.6219714  0.5943718  0.3167036 ]
[0.44801232 0.50875366 0.61004543 0.5957838  0.32481167]
[0.4461697  0.5075315  0.61299646 0.59860665 0.3184844 ]
[0.43305746 0.4930857  0.6096221  0.5926977  0.3309392 ]
[0.44183218 0.5020379  0.61970615 0.5955208  0.3254349 ]
[0.44254482 0.49376535 0.6126899  0.583543   0.32847765]
[0.4403061  0.50721973 0.60946244 0.6034762  0.3315672 ]
[0.4384259  0.5032901  0.60851157 0.5973858  0.32403302]
[0.43846375 0.5022315  0.6135255  0.60117215 0.33535388]
[0.4594089  0.5142279  0.62335753 0.5890998  0.31734776]
[0.43596834 0.49416542 0.6176787  0.5868927  0.32736892]
[0.45383313 0.51128554 0.62625104 0.58994234 0.31612635]
[0.4284321 0.4935397 0.6034159 0.596443  0.3285327]
[0.42604104 0.4915861  0.6057334  0.5972011  0.32937437]
[0.44639084 0.5085275  0.6094539  0.5973595  0.31766823]
[0.45737445 0.51187867 0.61704046 0.5949744  0.32312208]
[0.45286173 0.5039543  0.62771565 0.5865321  0.32633784]
[0.44536707 0.49676734 0.6164142  0.58691347 0.334003  ]
[0.45313308 0.5062818  0.62855715 0.5869772  0.3215919 ]
[0.4594305  0.50981486 0.61838317 0.5850767  0.3186839 ]
[0.44705614 0.50470227 0.62320054 0.5908667  0.32202294]
[0.4542963  0.49835688 0.6314806  0.5773467  0.3272368 ] 

如您所见,尽管输入始终是随机且不同的,但输出几乎相同。

那是为什么?

〜冈加那州

编辑:为澄清起见:我在遗传算法方法中使用了此模型,并且我需要“输出”来退出各种值!

0 个答案:

没有答案