我在调用model.fit方法时收到以下异常。
ValueError Traceback (most recent call last)
<ipython-input-30-a7c25bd01b61> in <module>()
8 cv_x.school_state.values,cv_x.teacher_prefix.values,cv_x.project_grade_category.values,
9 cv_x.clean_categories.values,cv_x.clean_subcategories.values],
---> 10 cv_y))
6 frames
/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
100 'Expected to see ' + str(len(names)) + ' array(s), '
101 'but instead got the following list of ' +
--> 102 str(len(data)) + ' arrays: ' + str(data)[:200] + '...')
103 elif len(names) > 1:
104 raise ValueError(
ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 8 array(s), but instead got the following list of 1 arrays: [array([[ 48, 24, 2, ..., 0, 0, 0],
[ 40, 787, 310, ..., 0, 0, 0],
[ 4, 5, 1474, ..., 0, 0, 0],
...,
[1725, 2095, 716, ..., 0, ...
model = Model(inputs=input_a, outputs=[output])
model.compile(optimizer='rmsprop', loss='binary_crossentropy')
model.fit([padded_docs_train,train_x.price,train_x.teacher_number_of_previously_posted_projects,
train_x.school_state,train_x.teacher_prefix,train_x.project_grade_category,
train_x.clean_categories,train_x.clean_subcategories], [train_y],epochs=12, batch_size=1000,
callbacks = [print_auc,tensorboard],
validation_data = ([padded_docs_cv,cv_x.price,cv_x.teacher_number_of_previously_posted_projects,
cv_x.school_state,cv_x.teacher_prefix,cv_x.project_grade_category,
cv_x.clean_categories,cv_x.clean_subcategories],[cv_y]))
如果相同的格式适用于输入参数,为什么会给validation_data例外。 以及如何正确传递validation_data中的参数。
input_a中的输入层如下:
[<tf.Tensor 'text_input:0' shape=(?, 500) dtype=float32>,
<tf.Tensor 'price_input:0' shape=(?, 1) dtype=int64>,
<tf.Tensor 'no_projects:0' shape=(?, 1) dtype=int64>,
<tf.Tensor 'input_school_state:0' shape=(?, 1) dtype=int32>,
<tf.Tensor 'input_teacher_prefix:0' shape=(?, 1) dtype=int32>,
<tf.Tensor 'input_project_grade_category:0' shape=(?, 1) dtype=int32>,
<tf.Tensor 'input_clean_categories:0' shape=(?, 1) dtype=int32>,
<tf.Tensor 'input_clean_subcategories:0' shape=(?, 1) dtype=int32>]