我要按数据框在“ zone_id和eventName”两列上进行分组。我需要计算按zone_id分组的eventName的百分比。
换句话说,我需要通过zone_id计算(点击/打印)* 100。
import pandas as pd
#read the csv file
df = pd.read_csv('data.csv', sep=';')
result=df.groupby(['zone_id','eventName']).event.count()
print(result)
#I use count() method to extract the number of clicked and printed by zone_id. Then on this basis I think to be able to find a way to compute a percentage by zone_id.
output :
zone_id eventName
28 printed 88
9283 clicked 197
printed 7732
9284 clicked 2
printed 452
9287 clicked 129
printed 3802
9614 clicked 4
printed 342
17437 clicked 55
printed 4026
#By using mean() function, the mean calculation is well done grouped by zone_id
result=df.groupby(['zone_id','eventName']).event.count().groupby('zone_id').mean()
print(result)
output :
zone_id
28 88.0
9283 3964.5
9284 227.0
9287 1965.5
9614 173.0
17437 2040.5
#Expected result : I need to compute the percentage of eventName (clicked/printed)*100 by zone_id
Expected output:
zone_id
28 0% -> (0/88)*100
9283 2.54% -> (197/7732)*100
9284 0.44% -> (2/452)*100
9287 3.39% -> (129/3802)*100
9614 1.16% -> (4/342)*100
17437 1.36% -> (55/4026)*100
答案 0 :(得分:4)
没有示例数据很难看到,但是尝试这样的事情吗?
events = df.groupby(['zone_id','eventName']).size()
events.loc[pd.IndexSlice[:, 'printed']] / events.loc[pd.IndexSlice[:, 'clicked']]
或者使用unstack获取点击并打印为列:
events = df.groupby(['zone_id','eventName']).size().unstack(level=1)
events['printed'] / events['clicked']