我要抓取“链接”,“标题”和“摘要”
我该如何抓取?
我尝试过
import requests
import json
url = 'http://www.arxiv-sanity.com/top?timefilter=year&vfilter=all'
res = requests.get(url)
text = res.text
# print(text)
d = json.loads(text)
print(d['title'], d['link'], d['abstract'])
但是发生SONDecodeError: Expecting value: line 1 column 1 (char 0)
答案 0 :(得分:1)
该URL返回HTML,而不是json响应。因此,您无法JSON解码。
答案 1 :(得分:0)
使用BeautifulSoup:
import requests
import json
from bs4 import BeautifulSoup as bs
url = 'http://www.arxiv-sanity.com/top?timefilter=year&vfilter=all'
res = requests.get(url)
text = res.text
soup=bs(text, "html.parser")
extract=soup.select('script')[6]
target = extract.decode().split('var papers = ')[1]
target2 = target.replace("}, {","}xxx{").replace('[{','{').replace('}];','}')
final = target2.split('xxx')
for i in range(len(final)):
if i == len(final)-1:
last = final[i].split('var pid')[0]
d = json.loads(last)
print(d['title'],d['link'],d['abstract'])
else:
d = json.loads(final[i])
print(d['title'],d['link'],d['abstract'])
示例输出:
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
http://arxiv.org/abs/1810.04805v2
We introduce a new language representation model called BERT, which stands
for Bidirectional Encoder Representations from Transformers. Unlike recent
language representation models, BERT is designed to pre-train deep
bidirectional representations from unlabeled text by jointly conditioning on
both left and right context in all layers...
等