我正在尝试使用OpenCV中的triangulatePoints()方法来重建3d对象
我为两个摄像机生成了投影矩阵,它们看起来很正常。 但是三角剖分方法针对不同的输入2D坐标返回相同的3d值。有什么问题吗?
#code
print('Projection matrices:')
print(P0,'\n',P1, '\n')
points = np.array([
[[381,198],[433,418]],
[[393,231],[435,453]],
[[415,225],[465,454]],
[[406,195],[169,420]]
])
for p in points:
print('2D coordinates: {}, {}'.format(p[0], p[1]))
s = np.array(cv2.triangulatePoints(P0, P1,
p[0],
p[1])).T
print('3D coordinates: {}'.format(s[0][:-1]/np.max(s[0][-1])))
print()
#Output:
#Projection matrices:
[[587.42947475 0. 223.06652927 0. ]
[ 0. 587.42947475 236.78123179 0. ]
[ 0. 0. 1. 0. ]]
[[ 5.87429475e+02 0.00000000e+00 2.23066529e+02 -1.09198390e+04]
[ 0.00000000e+00 5.87429475e+02 2.36781232e+02 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00]]
2D coordinates: [381 198], [433 418]
3D coordinates: [-1.00049629 0. 0. ]
2D coordinates: [393 231], [435 453]
3D coordinates: [-1.00049629 0. 0. ]
2D coordinates: [415 225], [465 454]
3D coordinates: [-1.00049629 0. 0. ]
2D coordinates: [406 195], [169 420]
3D coordinates: [-1.00049629 0. 0. ]
答案 0 :(得分:1)
我找到了答案:有必要在图像点初始化中将dtype指定为np.float32:
points = np.array([
[[381,198],[433,418]],
[[393,231],[435,453]],
[[415,225],[465,454]],
[[406,195],[169,420]]
], dtype=np.float32)
此输出正确后:
2D coordinates: [381. 198.], [433. 418.]
3D coordinates: [ -76.17712 -33.213867 -265.16254 ]
2D coordinates: [393. 231.], [435. 453.]
3D coordinates: [-110.72584 -66.3086 -358.42117]
2D coordinates: [415. 225.], [465. 454.]
3D coordinates: [-105.021255 -54.279873 -300.12518 ]
2D coordinates: [406. 195.], [169. 420.]
3D coordinates: [14.564291 5.4381375 43.69199 ]