全部
我对Francois Chollet的书《用Python进行深度学习》中的这段代码有疑问:
import numpy as np
import os
import sys
from matplotlib import pyplot as plt
def generator(data, lookback, delay, min_index, max_index,
shuffle=False, batch_size=128, step=6):
if max_index is None:
max_index = len(data) - delay - 1
i = min_index + lookback
# for it in range(1):
while True:
if shuffle:
rows = np.random.randint(
min_index + lookback, max_index, size=batch_size)
else:
if i + batch_size >= max_index:
i = min_index + lookback
rows = np.arange(i, min(i + batch_size, max_index))
i += len(rows)
samples = np.zeros((len(rows),
lookback // step,
data.shape[-1]))
targets = np.zeros((len(rows),))
for j, row in enumerate(rows):
indices = range(rows[j] - lookback, rows[j], step)
samples[j] = data[indices]
targets[j] = data[rows[j] + delay][1]
yield samples, targets
data_dir = os.path.join(os.getcwd(),'jena_climate')
fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')
f = open(fname)
data = f.read()
f.close()
lines = data.split('\n')
header = lines[0].split(',')
lines = lines[1:]
print(header)
print(len(lines))
float_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):
values = [float(x) for x in line.split(',')[1:]]
float_data[i, :] = values
# temp = float_data[:, 1]
# plt.plot(range(len(temp)), temp)
# plt.show()
mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data[:200000].std(axis=0)
float_data /= std
lookback = 1440
step = 6
delay = 144
batch_size = 128
train_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=0,
max_index=200000,
shuffle=True,
step=step,
batch_size=batch_size)
val_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=200001,
max_index=300000,
step=step,
batch_size=batch_size)
test_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=300001,
max_index=None,
step=step,
batch_size=batch_size)
# samples,targets=next(train_gen)
val_steps = (300000 - 200001 - lookback)
test_steps = (len(float_data) - 300001 - lookback)
# print(val_steps)
def evaluate_naive_method():
batch_maes = []
for step in range(val_steps):
samples, targets = next(val_gen)
print(step)
preds = samples[:, -1, 1]
mae = np.mean(np.abs(preds - targets))
batch_maes.append(mae)
print(np.mean(batch_maes))
evaluate_naive_method()
该代码定义了一个生成器函数,用于为温度预测示例生成样本。但是,在Ubuntu Linux下安装python 3.6.8之后,生成器仍然陷入无限循环,并且生成验证数据的循环永远不会执行。我在这里看到过类似的问题。显然,正确处理python 3中的生成器是一个小问题。 有人知道该如何规避吗?
答案 0 :(得分:0)
是的,这是因为yield语句的缩进被弄乱了。应该将其包含在while True
循环中,以在循环的每次迭代中产生一批。更改:
while True:
### other code
yield samples, targets
到
while True:
### other code
yield samples, targets