我有一个如下所示的数据框
df2 = pd.DataFrame({'person_id':[1],'H1_date' : ['2006-10-30 00:00:00'], 'H1':[2.3],'H2_date' : ['2016-10-30 00:00:00'], 'H2':[12.3],'H3_date' : ['2026-11-30 00:00:00'], 'H3':[22.3],'H4_date' : ['2106-10-30 00:00:00'], 'H4':[42.3],'H5_date' : [np.nan], 'H5':[np.nan],'H6_date' : ['2006-10-30 00:00:00'], 'H6':[2.3],'H7_date' : [np.nan], 'H7':[2.3],'H8_date' : ['2006-10-30 00:00:00'], 'H8':[np.nan]})
如上面的屏幕快照所示,我的源datframe(df2
)包含几个NA's
当我做df2.stack()
时,我丢失了数据中的所有NA。
但是我想保留H7_date
和H8
的NA,因为它们具有相应的值/日期对。对于H7_date
,我有一个有效值H7
,对于H8
,我有一个对应的H8_date
。
我只想在两个值(H5_date
,H5
)均为NA时才删除记录。
请注意,这里我只有很少的列,而我的真实数据有150多个列,并且列名是事先未知的。
我希望我的输出如下所示,虽然它们是NA的,但没有H5_date
,H5
答案 0 :(得分:1)
您可以使用:
col = [x for x in df.columns if "date" in x]
for column in col:
df.dropna(subset=[column,column[:-4]], how = 'all',inplace=True)
subset
将选择检测到NA的行,how
指定该行的条件(此处2行中的所有行都必须为NA),inplace
修改当前行数据框
答案 1 :(得分:1)
df = pd.melt(df2, id_vars='person_id', var_name='col', value_name='dates')
df['col2'] = df['col'].str.split("_").str[0]
df['count'] = df.groupby(['col2'])['dates'].transform(pd.Series.count)
df = df[df['count'] != 0]
df.drop(['col2', 'count'], axis=1, inplace=True)
print(df)
person_id col dates
0 1 H1_date 2006-10-30 00:00:00
1 1 H1 2.3
2 1 H2_date 2016-10-30 00:00:00
3 1 H2 12.3
4 1 H3_date 2026-11-30 00:00:00
5 1 H3 22.3
6 1 H4_date 2106-10-30 00:00:00
7 1 H4 42.3
10 1 H6_date 2006-10-30 00:00:00
11 1 H6 2.3
12 1 H7_date NaN
13 1 H7 2.3
14 1 H8_date 2006-10-30 00:00:00
15 1 H8 NaN
答案 2 :(得分:1)
一种方法是融化DF,应用标识同一“组”中列的键(在这种情况下为H<some digits>
,但您可以根据需要进行修改),然后按人员分组并对该键进行过滤那些包含至少一个非NA值的组),例如:
开始于:
df = pd.DataFrame({'person_id':[1],'H1_date' : ['2006-10-30 00:00:00'], 'H1':[2.3],'H2_date' : ['2016-10-30 00:00:00'], 'H2':[12.3],'H3_date' : ['2026-11-30 00:00:00'], 'H3':[22.3],'H4_date' : ['2106-10-30 00:00:00'], 'H4':[42.3],'H5_date' : [np.nan], 'H5':[np.nan],'H6_date' : ['2006-10-30 00:00:00'], 'H6':[2.3],'H7_date' : [np.nan], 'H7':[2.3],'H8_date' : ['2006-10-30 00:00:00'], 'H8':[np.nan]})
使用:
df2 = (
df.melt(id_vars='person_id')
.assign(_gid=lambda v: v.variable.str.extract('H(\d+)'))
.groupby(['person_id', '_gid'])
.filter(lambda g: bool(g.value.any()))
.drop('_gid', 1)
)
哪个给你:
person_id variable value
0 1 H1_date 2006-10-30 00:00:00
1 1 H1 2.3
2 1 H2_date 2016-10-30 00:00:00
3 1 H2 12.3
4 1 H3_date 2026-11-30 00:00:00
5 1 H3 22.3
6 1 H4_date 2106-10-30 00:00:00
7 1 H4 42.3
10 1 H6_date 2006-10-30 00:00:00
11 1 H6 2.3
12 1 H7_date NaN
13 1 H7 2.3
14 1 H8_date 2006-10-30 00:00:00
15 1 H8 NaN
然后,您可以根据需要将其用作调整的起点。