最好的方法来计算2d numpy数组中包含另一个1d数组的所有元素的所有行?

时间:2019-07-30 15:42:06

标签: python numpy numpy-ndarray

对2d numpy数组中包含另一个1d numpy数组的所有值的行进行计数的最佳方法是什么?第二个数组可以比第一个数组的长度多列。

elements = np.arange(4).reshape((2, 2))
test_elements = [2, 3]
somefunction(elements, test_elements)

我希望函数返回1。

elements = np.arange(15).reshape((5, 3))

# array([[ 0,  1,  2],
#       [ 3,  4,  5],
#       [ 6,  7,  8],
#       [ 9, 10, 11],
#       [12, 13, 14]])

test_elements = [4, 3]
somefunction(elements, test_elements)

还应返回1。

必须包含1d数组的所有元素。如果连续只能找到几个元素,则不算在内。因此:

elements = np.arange(15).reshape((5, 3))

# array([[ 0,  1,  2],
#       [ 3,  4,  5],
#       [ 6,  7,  8],
#       [ 9, 10, 11],
#       [12, 13, 14]])

test_elements = [3, 4, 10]
somefunction(elements, test_elements)

还应返回0。

4 个答案:

答案 0 :(得分:0)

创建一个找到的元素的布尔数组,然后按行使用,这将避免同一行中出现多个值,最后通过使用sum来对行进行计数,

np.any(np.isin(elements, test), axis=1).sum()

输出

>>> elements
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])
>>> test = [1, 6, 7, 4]
>>> np.any(np.isin(elements, test), axis=1).sum()
3

答案 1 :(得分:0)

编辑:好的,现在我实际上有更多时间弄清楚发生了什么。)


这里有两个问题:

  1. 计算复杂度取决于两个输入的大小,并且不能被一维基准测试图很好地捕获
  2. 实际时间主要取决于输入的变化

问题可以分为两部分:

  1. 遍历行
  2. 执行子集检查,这基本上是一个嵌套循环二次运算(在最坏的情况下)

我们知道,对于足够大的输入,在NumPy中循环浏览行更快,在纯Python中循环浏览 slower

作为参考,让我们考虑以下两种方法:

# pure Python approach
def all_in_by_row_flt(arr, elems=ELEMS):
    return sum(1 for row in arr if all(e in row for e in elems))

# NumPy apprach (based on @Mstaino answer)
def all_in_by_row_np(arr, elems=ELEMS):
    def _aaa_helper(row, e=elems):
        return np.isin(e, row)
    return np.sum(np.all(np.apply_along_axis(_aaa_helper, 1, arr), 1))

然后,考虑子集检查操作,如果输入使得检查在更少的循环内执行,则纯Python循环比NumPy更快。相反,如果需要足够多的循环,则NumPy实际上可以更快。 最重要的是,存在遍历行的循环,但是由于子集检查操作是二次的并且具有不同的常数系数,因此尽管在NumPy中行循环更快,但在某些情况下(因为行数会足够大),则在纯Python中总体操作 更快。 这是我在较早的基准测试中遇到的情况,并且对应于子集检查始终(或几乎)False并且确实在少数循环中失败的情况。 一旦子集检查开始需要更多的循环,仅Python方法就开始落后,并且对于大多数(如果不是全部)行,子集检查实际上是True的情况,NumPy方法实际上更快。

NumPy和纯Python方法之间的另一个主要区别是,纯Python使用惰性求值,而NumPy不使用懒惰求值,并且实际上需要创建潜在的大型中间对象,从而减慢了计算速度。 最重要的是,NumPy对行进行两次迭代(在sum()中进行一次迭代,在np.apply_along_axis()中进行一次迭代),而纯Python仅执行一次。


使用set().issubset()的其他方法,例如来自@ GZ0答案:

def all_in_by_row_set(arr, elems=ELEMS):
    elems = set(elems)
    return sum(map(elems.issubset, row))

与子集检查中显式编写嵌套循环的时间不同,但是它们仍然受外部循环慢的困扰。


那么,下一步是什么?

答案是使用CythonNumba。 这样做的目的是始终保持类似于NumPy的速度(读为C)(不仅对于足够大的输入),还可以进行惰性计算并最小化行的循环次数。

Cython方法(在IPython中使用%load_ext Cython魔术实现)的示例是:

%%cython --cplus -c-O3 -c-march=native -a
#cython: language_level=3, boundscheck=False, wraparound=False, initializedcheck=False, cdivision=True


cdef long all_in_by_row_c(long[:, :] arr, long[:] elems) nogil:
    cdef long result = 0
    I = arr.shape[0]
    J = arr.shape[1]
    K = elems.shape[0]
    for i in range(I):
        is_subset = True
        for k in range(K):
            is_contained = False
            for j in range(J):
                if elems[k] == arr[i, j]:
                    is_contained = True
                    break
            if not is_contained:
                is_subset = False
                break
        result += 1 if is_subset else 0
    return result


def all_in_by_row_cy(long[:, :] arr, long[:] elems):
    return all_in_by_row_c(arr, elems)

类似的Numba代码显示:

import numba as nb


@nb.jit(nopython=True, nogil=True)
def all_in_by_row_jit(arr, elems=ELEMS):
    result = 0
    n_rows, n_cols = arr.shape
    for i in range(n_rows):
        is_subset = True
        for e in elems:
            is_contained = False
            for r in arr[i, :]:
                if e == r:
                    is_contained = True
                    break
            if not is_contained:
                is_subset = False
                break
        result += 1 if is_subset else 0
    return result

现在,按时间顺序,我们得到以下内容(相对较少的行数):

arr.shape=(100, 1000) elems.shape=(1000,) result=0
Func: all_in_by_row_cy  120 µs ± 1.07 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Func: all_in_by_row_jit 129 µs ± 131 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Func: all_in_by_row_flt 2.44 ms ± 13.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_set 9.98 ms ± 52.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_np  13.7 ms ± 52.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

arr.shape=(100, 2000) elems.shape=(1000,) result=0
Func: all_in_by_row_cy  1.45 ms ± 24.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Func: all_in_by_row_jit 1.52 ms ± 4.16 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Func: all_in_by_row_flt 30.1 ms ± 452 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_set 19.8 ms ± 56.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_np  18 ms ± 28.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

arr.shape=(100, 3000) elems.shape=(1000,) result=37
Func: all_in_by_row_cy  10.4 ms ± 31.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_jit 10.9 ms ± 13.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_flt 226 ms ± 2.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 30.5 ms ± 92.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_np  21.9 ms ± 87.4 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

arr.shape=(100, 4000) elems.shape=(1000,) result=86
Func: all_in_by_row_cy  16.8 ms ± 32.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_jit 17.7 ms ± 42 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Func: all_in_by_row_flt 385 ms ± 2.33 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 39.5 ms ± 588 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_np  25.7 ms ± 128 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

现在,最后一个块的减速无法用第二维中输入大小的增加来解释。 实际上,如果增加短路率(例如,通过更改随机数组的值范围),则对于最后一个块(输入大小相同),将得到:

arr.shape=(100, 4000) elems.shape=(1000,) result=0
Func: all_in_by_row_cy   152 µs ± 1.89 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Func: all_in_by_row_jit  173 µs ± 4.72 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Func: all_in_by_row_flt  556 µs ± 8.56 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Func: all_in_by_row_set  39.7 ms ± 287 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_np   31.5 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

请注意,基于set()的方法与短路率是无关的(因为基于哈希的实现具有~O(1)检查存在的复杂性,但这是以散列预计算为代价的,这些结果表明这可能不比直接嵌套循环方法要快。

最后,对于更大的行数:

arr.shape=(100000, 1000) elems.shape=(1000,) result=0
Func: all_in_by_row_cy  141 ms ± 2.08 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_jit 150 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Func: all_in_by_row_flt 2.6 s ± 28.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 10.1 s ± 216 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_np  13.7 s ± 15.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

arr.shape=(100000, 2000) elems.shape=(1000,) result=34
Func: all_in_by_row_cy  1.2 s ± 753 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_jit 1.27 s ± 7.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_flt 24.1 s ± 119 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 19.5 s ± 270 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_np  18 s ± 18.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

arr.shape=(100000, 3000) elems.shape=(1000,) result=33859
Func: all_in_by_row_cy  9.79 s ± 11.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_jit 10.3 s ± 5.55 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_flt 3min 30s ± 1.13 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 30 s ± 57.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_np  21.9 s ± 59.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

arr.shape=(100000, 4000) elems.shape=(1000,) result=86376
Func: all_in_by_row_cy  17 s ± 30.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_jit 17.9 s ± 13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_flt 6min 29s ± 293 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_set 38.9 s ± 33 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Func: all_in_by_row_np  25.7 s ± 29.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

最后,请注意,Cython / Numba代码 可以通过算法进行优化。

答案 2 :(得分:0)

也许有一个更有效的解决方案,但是如果您希望存在test_elements的“所有”元素的行,则可以反转np.isin并将其沿行应用,如下所示: / p>

np.apply_along_axis(lambda x: np.isin(test_elements, x), 1, elements).all(1).sum()

答案 3 :(得分:0)

以下是@ norok2解决方案的一种稍微高效(但可读性较差)的变体。

sum(map(set(test_elements).issubset, elements))