如何获得非顺序模型的类标签?

时间:2019-07-30 12:43:19

标签: python keras

我用Keras训练了9类图像识别(带有边界框)模型。验证精度为0.85

我曾尝试使用预报类,但由于该模型不是顺序的,因此无法正常工作。另外,我尝试将匹配预测数组匹配到带有按字母顺序排序的标签的列表。但是它都行不通。

预测:


kategoriler = ['category0', 'category1', 'category2', 'category3', 'category4', 'category5', 'category6', 'category7', 'category8']


def load_image(img_path, show=False):
    img = image.load_img(img_path, target_size=(200, 200))
    img_tensor = image.img_to_array(img)   
    img_tensor = np.expand_dims(img_tensor, axis=0)    
    img_tensor /= 255.    

    return img_tensor

def predict_labels (event,context):
    img_url = event['imageUrl']
    img_id = event['id']
    human_id = event['humanId']


    img_path = '/tmp/img'
    os.system('curl -o ' + img_path + ' ' + img_url)

    new_image = load_image(img_path)

    # check prediction
    pred = model.predict(new_image)
    sonuc = kategoriler[np.argmax(pred[0])]

    response = {
        'id' : img_id,
        'humanId' : human_id,
        'clothes' : {
            'category' : sonuc,
            'subCategory' : '-'
        },
        'pred': str(pred)
    }

    return json.dumps(response)

我希望输出category6,但实际输出是0.05920969

0 个答案:

没有答案