我想加入2个流,但是收到了下一个错误,并且我不知道如何解决:
有流式聚合时不支持追加输出模式 在不带水印的流式DataFrames / DataSet上;; \ n加入内部
df_stream = spark.readStream.schema(schema_clicks).option("ignoreChanges", True).option("header", True).format("csv").load("s3://mybucket/*.csv")
display(df_stream.select("SendID", "EventType", "EventDate"))
我想与df2一起加入df1:
df1 = df_stream \
.withColumn('timestamp', unix_timestamp(col('EventDate'), "MM/dd/yyyy hh:mm:ss aa").cast(TimestampType())) \
.select(col("SendID"), col("timestamp"), col("EventType")) \
.withColumnRenamed("SendID", "SendID_update") \
.withColumnRenamed("timestamp", "timestamp_update") \
.withWatermark("timestamp_update", "1 minutes")
df2 = df_stream \
.withColumn('timestamp', unix_timestamp(col('EventDate'), "MM/dd/yyyy hh:mm:ss aa").cast(TimestampType())) \
.withWatermark("timestamp", "1 minutes") \
.groupBy(col("SendID")) \
.agg(max(col('timestamp')).alias("timestamp")) \
.orderBy('timestamp', ascending=False)
join = df2.alias("A").join(df1.alias("B"), expr(
"A.SendID = B.SendID_update" +
" AND " +
"B.timestamp_update >= A.timestamp " +
" AND " +
"B.timestamp_update <= A.timestamp + interval 1 hour"))
最后,当我在追加模式下写入结果时:
join \
.writeStream \
.outputMode("Append") \
.option("checkpointLocation", "s3://checkpointjoin_delta") \
.format("delta") \
.table("test_join")
我收到上一个错误。
AnalysisException Traceback(最近的调用) 最后)在() ----> 1 join.writeStream.outputMode(“ Append”)。option(“ checkpointLocation”, “ s3:// checkpointjoin_delta”).format(“ delta”).table(“ test_join”)
表中的/databricks/spark/python/pyspark/sql/streaming.py(自己, tableName)1137“”“ 1138如果 isinstance(tableName,basestring): -> 1139返回self._sq(self._jwrite.table(tableName))1140否则:1141引发TypeError(“ tableName can 只能是一个字符串”)
/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py 在通话((* args)自己)1255中,答案= self.gateway_client.send_command(命令)1256 return_value = get_return_value( -> 1257 answer,self.gateway_client,self.target_id,self.name)1258 1259 for temp_args中的temp_arg:
/databricks/spark/python/pyspark/sql/utils.py in deco(* a,** kw) 67 e.java_exception.getStackTrace()))
答案 0 :(得分:0)
问题是 .groupBy ,有必要添加时间戳。例如:
df2 = df_stream \
.withColumn('timestamp', unix_timestamp(col('EventDate'), "MM/dd/yyyy hh:mm:ss aa").cast(TimestampType())) \
.withWatermark("timestamp", "1 minutes") \
.groupBy(col("SendID"), "timestamp") \
.agg(max(col('timestamp')).alias("timestamp")) \
.orderBy('timestamp', ascending=False)