如何将pyspark数据框列中的值与pyspark中的另一个数据框进行比较

时间:2019-07-29 13:21:38

标签: python dataframe pyspark pyspark-sql

我有一个pyspark dataframe(df1),其第一第一行如下:

[Row(_c0='{"type":"Fi","values":[0.20100994408130646,1.172734797000885,0.06788740307092667,0.2314232587814331,0.2012220323085785]}', _c1='0')]

我想将“值”列表与dataframe(df2)值以下的第一列进行比较,如下所示:

0    0.57581    1.25461    0.68694    0.974580    1.54789    0.23646
1    0.98745    0.23655    2.58970    4.587580    0.89756    1.25678
2    0.45780    5.78940    0.65986    2.125400    0.98745    1.23658
3    2.56834    0.25698    4.26587    0.569872    0.36987    0.68975
4    0.25678    1.23654    5.68320    0.986230    0.87563    2.58975

类似地,我在df1中有很多行,我必须查看df1“值”列表中的哪些值大于df2中的相应列。我需要找到那些索引满足上述条件,并将其作为列表存储在df1的另一列中。

例如,1.172737 > 0.98745的索引为1。因此,我将在df1 named(indices)中有另一列,其中包含value1,如果出现另一个值,则必须追加该列。

比较是在相应的列和行之间进行的。上面显示的df1行是第一行,因此必须与df2中的第一列进行比较。

如果我对某事不重视,请在评论中让我知道。

1 个答案:

答案 0 :(得分:0)

此代码可用于Python 2.7和Spark 2.3.2:

from pyspark.sql import functions as F
from pyspark.sql.types import ArrayType, IntegerType

# Create test dataframes
df1 = spark.createDataFrame([
        ['{"type":"Fi","values":[0.20100994408130646,1.172734797000885,0.06788740307092667,0.2314232587814331,0.2012220323085785]}', '0'],
        ['{"type":"Fi","values":[0.6, 0.8, 0.5, 2.1, 0.4]}', '0']
    ],['_c0','_c1'])
df2 = spark.createDataFrame([
        [0, 0.57581, 1.25461, 0.68694, 0.974580, 1.54789, 0.23646],
        [1, 0.98745, 0.23655, 2.58970, 4.587580, 0.89756, 1.25678],
        [2, 0.45780, 5.78940, 0.65986, 2.125400, 0.98745, 1.23658],
        [3, 2.56834, 0.25698, 4.26587, 0.569872, 0.36987, 0.68975],
        [4, 0.25678, 1.23654, 5.68320, 0.986230, 0.87563, 2.58975]
    ],['id','v1', 'v2', 'v3', 'v4', 'v5', 'v6'])

# Get schema and load json correctly
json_schema = spark.read.json(df1.rdd.map(lambda row: row._c0)).schema
df1 = df1.withColumn('json', F.from_json('_c0', json_schema))

# Get column 1 values to compare
values = [row['v1'] for row in df2.select('v1').collect()]

# Define udf to compare values
def cmp_values(lst):
    list_cmp = map(lambda t: t[0] > t[1], zip(lst, values))  # Boolean list
    return [idx for idx, cond in enumerate(list_cmp) if cond]  # Indices of satisfying elements

udf_cmp_values = F.udf(cmp_values, ArrayType(IntegerType()))

# Apply udf on array
df1 = df1.withColumn('indices', udf_cmp_values(df1.json['values']))
df1.show()

+--------------------+---+--------------------+---------+
|                 _c0|_c1|                json|  indices|
+--------------------+---+--------------------+---------+
|{"type":"Fi","val...|  0|[Fi, [0.201009944...|      [1]|
|{"type":"Fi","val...|  0|[Fi, [0.6, 0.8, 0...|[0, 2, 4]|
+--------------------+---+--------------------+---------+