首先,我正在做有关情绪分析分类器比较的项目。然后我想知道每个分类器功能的重要性
答案 0 :(得分:0)
对于K最近的Neigbour,您可以同时使用一项功能进行拟合和预测,然后打印结果以查看哪个功能最重要。
使用虹膜数据集的示例:
import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
iris = datasets.load_iris() # the data
clf = KNeighborsClassifier() # the model
y = iris.target # the target vector
n_features = iris.data.shape[1]
print('Feature Index , Accuracy obtained')
for i in range(n_features):
X = iris.data[:, i].reshape(-1, 1)
scores = cross_val_score(clf, X, y, cv = 5, scoring='accuracy') # cross-validated accuracy
print('{} {}'.format(i, scores.mean()))
上面的照片:
Feature Index , Accuracy obtained
0 0.646666666667
1 0.553333333333
2 0.946666666667
3 0.96