我想实现一个ResNet网络(或更确切地说,是剩余块),但我真的希望它采用顺序网络形式。
我所说的顺序网络形式是:
## mdl5, from cifar10 tutorial
mdl5 = nn.Sequential(OrderedDict([
('pool1', nn.MaxPool2d(2, 2)),
('relu1', nn.ReLU()),
('conv1', nn.Conv2d(3, 6, 5)),
('pool1', nn.MaxPool2d(2, 2)),
('relu2', nn.ReLU()),
('conv2', nn.Conv2d(6, 16, 5)),
('relu2', nn.ReLU()),
('Flatten', Flatten()),
('fc1', nn.Linear(1024, 120)), # figure out equation properly
('relu4', nn.ReLU()),
('fc2', nn.Linear(120, 84)),
('relu5', nn.ReLU()),
('fc3', nn.Linear(84, 10))
]))
但是当然,NN lego块是“ ResNet”。
我知道方程式是这样的:
但是我不确定如何在Pytorch AND Sequential中做到这一点。顺序是我的关键!
交叉发布:
答案 0 :(得分:0)
您不能仅使用torch.nn.Sequential
来完成此操作,因为顾名思义,它需要顺序进行操作,而顾名思义,这些操作是并行进行的。
原则上,您可以像这样轻松地构建自己的block
:
import torch
class ResNet(torch.nn.Module):
def __init__(self, module):
self.module = module
def forward(self, inputs):
return self.module(inputs) + inputs
哪些人可以使用以下内容:
model = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, kernel_size=7),
# 32 filters in and out, no max pooling so the shapes can be added
ResNet(
torch.nn.Sequential(
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
)
),
# Another ResNet block, you could make more of them
# Downsampling using maxpool and others could be done in between etc. etc.
ResNet(
torch.nn.Sequential(
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
)
),
# Pool all the 32 filters to 1, you may need to use `torch.squeeze after this layer`
torch.nn.AdaptiveAvgPool2d(1),
# 32 10 classes
torch.nn.Linear(32, 10),
)
通常被忽略的事实(当涉及浅层网络时,没有任何实际后果)是应该保留跳过连接而没有任何非线性,例如ReLU
或卷积层,这就是您所看到的上方(来源:Identity Mappings in Deep Residual Networks)。