我想将用于图像分割的全卷积模型从here转换为张量流精简模型。我已经保存了.pb模型并使用了以下命令:
tflite_convert --output_file=a.tflite --saved_model_dir=./ --saved_model_tag_set serve --saved_model_signature_key serving_default
但是输入形状出现错误:
ValueError: Provide an input shape for input array 'Placeholder'
$ saved_model_cli show --dir . --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input'] tensor_info:
dtype: DT_FLOAT
shape: unknown_rank
name: Placeholder:0
The given SavedModel SignatureDef contains the following output(s):
outputs['pred'] tensor_info:
dtype: DT_INT64
shape: (-1, -1, -1)
name: content_vgg/ArgMax:0
outputs['pred_up'] tensor_info:
dtype: DT_INT64
shape: (-1, -1, -1)
name: content_vgg/ArgMax_1:0
Method name is: tensorflow/serving/predict
我想知道是否有可能将完全卷积的网络转变为张量流精简模型。