R:替换非NA值之前和之后的NA

时间:2019-07-19 18:19:13

标签: r dataframe lapply na

我有一个庞大的数据库,有时数据库缺少一些值,需要用其前后值之间的平均值代替。我不想仅输入最后一个值(如果它是NA),而是使用平均值进行简单的插值。

我成功使用了两个for循环和一个if语句:

t2 <- c(0, 0, 0.02, 0.04, NA, NA)
t3 <- c(0, 0, NA, 0, -0.01, 0.03)
t4 <- c(0, -0.02, 0.01, 0, 0, -0.02)
df <- data.frame(t1,t2,t3,t4)

df.save<-df

for(i in 2:nrow(df)){
  for(j in 2:ncol(df)){
    if(i==1|j==1){
      df[i,j]=df[i,j]
    } else {
    if(is.na(df[i,j])& !is.na(df[i-1,j-1])){
      df[i,j]=mean(df[i,j-1],df[i,j+1])
  }
  }
  }
}

df

我确信这根本没有效率,甚至没有通用性-我编写代码的方式必须从第二行和第二列开始对NA进行搜索。我认为lapply可以在这里为您提供帮助,但是我无法实现任何目标。有什么想法吗?

编辑1 Rui的回答很完美,但是在阐述我的例子时,我忘记考虑两个NA相互跟随的情况:

t2 <- c(0, 0, 0.02, 0.04, NA, NA)
t3 <- c(0, 0, NA, 0, -0.01, 0.03)
t4 <- c(0, -0.02, 0.01, 0, 0, -0.02)
df <- data.frame(t1,t2,t3,t4)

df.save<-df

for(i in 2:nrow(df)){
  for(j in 2:ncol(df)){
    if(i==1|j==1){
      df[i,j]=df[i,j]
    } else {
    if(is.na(df[i,j])& !is.na(df[i-1,j-1])){
      df[i,j]=mean(df[i,j-1],df[i,j+1])
  }
  }
  }
}

df

在这种情况下,我们会收到错误消息

Error in rowMeans(cbind(x[prev], x[nxt]), na.rm = TRUE) : 
  'x' must be numeric

2 个答案:

答案 0 :(得分:1)

以下功能可完成问题的要求。

meanNA <- function(x){
  na <- is.na(x)
  prev <- c(na[-1], FALSE)
  nxt  <- c(FALSE, na[-length(x)])
  x[na] <- rowMeans(cbind(x[prev], x[nxt]), na.rm = TRUE)
  is.na(x) <- is.nan(x)
  x
}

df[] <- lapply(df, meanNA)

df
#    t2    t3    t4
#1 0.00  0.00  0.00
#2 0.00  0.00 -0.02
#3 0.02  0.00  0.01
#4 0.04  0.00  0.00
#5 0.04 -0.01  0.00
#6   NA  0.03 -0.02

答案 1 :(得分:0)

Using this answer as an example:

df <- t(df.save)
for(i in 2:ncol(df)){
  idx <- which(is.na(df[,i]))
  idx <- idx[which(idx != 1)]
  if(length(idx) > 0){
    df[idx, i] <- sapply(idx, function(x) mean(df[x-1,i], df[x+1, i]))
  }
}