我正在拟合一个线性模型,对于该模型,我根据使用RStudio还是R获得不同的系数;即使我在两种情况下都使用相同的输入数据和相同的代码。
我尝试了数据的不同子集(从仅10行到最多一半的数据),并且差异仅在输入整个数据集时发生。
Here's the dput() output(太大了,无法粘贴到这里,密码:r)
a = dputdata
lm.transcprot = lm(formula = I(a$b - 0) ~ 0 + a$a)
会话详细信息:
RStudio
> sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 9 (stretch)
Matrix products: default
BLAS/LAPACK: /usr/lib/libopenblasp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_3.6.0 rsconnect_0.8.13 tools_3.6.0
> find('lm')
[1] "package:stats"
> summary(a)
a b
Min. : 1.002 Min. : 0.13
1st Qu.: 5.887 1st Qu.: 5320.27
Median : 14.551 Median : 11739.61
Mean : 25.877 Mean : 20524.21
3rd Qu.: 34.424 3rd Qu.: 26430.47
Max. :136.997 Max. :116315.41
端子
> sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS
Matrix products: default
BLAS/LAPACK: /opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/libmkl_rt.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_3.6.1 tools_3.6.1
> find('lm')
[1] "package:stats"
> summary(a)
a b
Min. : 1.002 Min. : 0.13
1st Qu.: 5.887 1st Qu.: 5320.27
Median : 14.551 Median : 11739.61
Mean : 25.877 Mean : 20524.21
3rd Qu.: 34.424 3rd Qu.: 26430.47
Max. :136.997 Max. :116315.41
获得的输出:
RStudio
> lm.transcprot
Call:
lm(formula = I(a$b - 0) ~ 0 + a$a)
Coefficients:
a$a
462.5
端子
> lm.transcprot
Call:
lm(formula = I(a$b - 0) ~ 0 + a$a)
Coefficients:
a$a
1889