我正在尝试使用estimator.export_saved_model()导出给定的estimator的SavedModel:
def serving_receiver_fn():
serialized_tf_example = tf.compat.v1.placeholder(
dtype=tf.string, shape=[None], name='input_example_tensor')
image = tf.feature_column.numeric_column("resnet50_input", shape=[255, 255, 3])
label = tf.feature_column.numeric_column('dense_1_target')
receiver_tensors = {'examples': serialized_tf_example}
feature_spec = tf.feature_column.make_parse_example_spec([image, label])
features = tf.io.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
estimator.export_saved_model(export_dir_base=serving_model_dir,
serving_input_receiver_fn=serving_receiver_fn,
checkpoint_path=tf.train.latest_checkpoint(
f'/Users/user/Documents/.../saved_model/variables/'),
)
但是我得到了错误:
TypeError: Existing "global_step" must be a Variable or Tensor: None.
请帮助!