所以我有2个不同的数据集RMSD和Energy。 RMSD具有100帧X 48温度。能量具有100帧X 48温度。我在下面提供了一些数据。
每列的温度都在260K-500K之间,因此如上所述,我有48个温度。
temperature = np.linspace(260,500,48).reshape(48,1)
def calculate_delta_G(xf):
xf[xf==0] = 0.001
xf[xf==1] = 0.999
temp_log = np.log((1-xf)/xf)
ener = -temp_log
return ener
energy = calculate_delta_G(xf)
我想将能量绘制成RMSD和温度的函数。
X轴= RMSD,Y轴=温度,Z轴=能量。
能量(xf)
0.88 0.81 0.81 0.88 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.87 0.31 0.81 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.88 0.28 0.81 0.81 0.25 0.25 0.81 0.81 0.81 0.25 0.31 0.81 0.75 0.81 0.31 0.29 0.19 0.81 0.31 0.81 0.25
0.88 0.81 0.81 0.88 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.87 0.31 0.81 0.81 0.81 0.88 0.81 0.81 0.86 0.87 0.75 0.25 0.88 0.81 0.25 0.75 0.79 0.88 0.25 0.88 0.31 0.75 0.25 0.81 0.81 0.31 0.31 0.19 0.75 0.25 0.81 0.25
0.88 0.81 0.81 0.81 0.88 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.87 0.81 0.81 0.81 0.81 0.31 0.88 0.81 0.81 0.81 0.75 0.87 0.88 0.25 0.81 0.25 0.81 0.75 0.25 0.88 0.88 0.31 0.75 0.81 0.25 0.25 0.81 0.31 0.19 0.75 0.25 0.25 0.81
0.88 0.81 0.81 0.81 0.88 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.79 0.31 0.88 0.81 0.81 0.81 0.75 0.81 0.88 0.25 0.25 0.81 0.81 0.75 0.25 0.88 0.88 0.31 0.75 0.81 0.25 0.31 0.75 0.19 0.25 0.25 0.75 0.81 0.25
0.88 0.81 0.81 0.81 0.88 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.87 0.81 0.81 0.81 0.81 0.88 0.31 0.81 0.81 0.81 0.81 0.81 0.25 0.88 0.31 0.81 0.81 0.75 0.25 0.88 0.88 0.31 0.81 0.25 0.81 0.76 0.31 0.19 0.31 0.75 0.81 0.25 0.25
0.81 0.81 0.88 0.81 0.88 0.88 0.81 0.81 0.75 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.87 0.81 0.25 0.81 0.81 0.79 0.81 0.81 0.88 0.25 0.81 0.25 0.75 0.25 0.87 0.87 0.31 0.75 0.25 0.81 0.79 0.25 0.19 0.75 0.81 0.25 0.25 0.25
0.88 0.81 0.81 0.88 0.81 0.88 0.81 0.75 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.25 0.88 0.81 0.81 0.81 0.81 0.87 0.81 0.87 0.31 0.81 0.25 0.81 0.25 0.88 0.31 0.87 0.81 0.81 0.25 0.81 0.19 0.31 0.75 0.31 0.81 0.25 0.25
0.88 0.81 0.88 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.25 0.81 0.81 0.81 0.81 0.81 0.81 0.31 0.88 0.81 0.25 0.25 0.75 0.88 0.81 0.31 0.81 0.81 0.25 0.25 0.81 0.31 0.75 0.25 0.81 0.25 0.25
0.88 0.81 0.81 0.88 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.88 0.84 0.81 0.81 0.87 0.83 0.81 0.81 0.81 0.88 0.25 0.81 0.81 0.81 0.81 0.81 0.81 0.87 0.25 0.25 0.81 0.75 0.25 0.88 0.31 0.88 0.81 0.81 0.25 0.81 0.19 0.21 0.75 0.25 0.81 0.25 0.25
0.88 0.81 0.81 0.88 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.74 0.25 0.81 0.81 0.81 0.87 0.81 0.81 0.30 0.25 0.81 0.25 0.81 0.88 0.31 0.87 0.81 0.81 0.25 0.81 0.19 0.25 0.81 0.19 0.31 0.81 0.25
RMSD(第一列是帧号/序列号)
19991 0.618793574 1.12074848 1.02808325 1.08683459 0.866310174 0.911906693 1.30381795 1.82816707 1.44472654 1.07542273 1.02941825 1.41460516 1.16972179 1.72095818 0.652915943 1.51596462 0.926598447 3.8378541 1.51121686 0.927422672 1.16718848 1.14295316 0.885107627 1.4300892 1.07371318 1.21248621 0.923641168 0.548406496 5.82068002 0.887513918 1.46950834 6.19428616 7.5820221 1.22756685 0.810412382 1.10814912 9.05285243 4.96694512 1.1948647 1.32979153 1.32644914 5.50620036 7.75859753 7.8314886 1.78770472 5.14910281 1.34635928 8.27916961
19992 0.6190783 1.23882954 1.0294775 1.17833384 1.3843293 0.899015298 1.65335552 0.728016348 0.998450504 1.17164194 1.78168314 1.45213638 1.26158756 0.995183516 0.769488127 1.45734982 0.962851547 3.52599637 1.07657635 1.38301564 1.08219939 0.883391754 1.13574262 1.1963314 1.32275109 0.717983932 1.36844093 5.6387985 0.779769917 1.23874113 6.13444872 1.43963756 1.31952926 0.671831002 7.81900501 1.09688508 4.34418033 1.46815061 9.21317307 1.16844407 1.27774277 8.37118637 5.28266069 7.56442105 1.96236598 4.67302096 1.12320952 7.85519674
19993 0.598022241 1.19158029 1.04469129 1.31269406 1.1255421 0.891145109 0.681156577 1.75049303 0.977697361 1.36358461 1.35600992 1.60017882 1.3172798 0.812639799 1.10659831 0.798468473 1.01188512 1.37574503 1.52921602 1.10502663 3.46191559 0.836583532 1.04883331 1.43988441 1.16899727 1.31143778 0.72071088 0.567437765 5.73816066 1.26524268 6.35919111 1.24806983 1.37090317 8.04700916 0.844505219 0.897270877 4.85765112 1.46964813 1.13397676 9.18564858 8.8766122 1.05524345 5.77807153 7.53590262 1.83671172 5.23944461 7.88842678 1.05092523
19994 0.635160228 1.11823128 1.33195743 0.977060132 1.06748768 0.778323878 1.77113962 0.894461913 0.9916443 1.35419389 1.44858808 1.82492844 1.12391337 1.12412033 0.88478564 0.946661102 1.49848831 0.875328837 1.18906908 1.73486011 4.11865863 1.03764807 1.18911647 1.38820353 0.952912603 1.31117638 0.729247919 0.673595396 5.54045267 6.17006944 1.02840385 1.38723133 1.47123503 7.66451717 0.668963933 0.812348298 4.8149816 1.48273971 1.21571293 8.36258862 8.59330159 1.28526308 7.7676773 5.66143942 8.37938933 1.71508451 1.46676601 4.93049835
19995 0.680951566 1.04809412 1.24490059 1.16933298 1.20221742 0.90435385 0.925138204 1.03536374 1.89162766 1.71891521 1.32600356 1.50993453 1.04443682 0.767556136 0.987849776 0.767733684 0.951025849 1.4056759 1.22130171 1.67128197 1.06243663 3.92663937 1.3564439 1.17280944 1.26293413 0.800090311 1.29637773 5.76360469 0.681333816 5.69659755 1.28244871 1.28222765 1.41785841 7.69885701 0.783839975 0.807357933 4.88545879 1.15044476 8.80913827 1.24140757 1.3800232 9.04560581 7.71008146 5.650438 1.71964011 1.40779415 8.03948976 5.24952623
19996 1.06576333 1.23602251 0.552638696 1.16114786 1.07331766 1.02213229 0.885441571 1.03636252 1.83381138 1.39579641 1.72047103 0.718358472 1.4480975 1.10164063 1.0224124 0.889966272 1.03215027 1.49957106 1.4604068 1.16300417 1.05394583 1.12099298 4.17176425 1.10248557 1.36178127 1.44722151 0.770884519 1.12599287 0.506551508 5.21852007 1.25788059 6.04067221 1.43109369 7.64497902 0.993986558 0.857380526 4.89844726 1.10033702 9.3403556 1.32575278 1.441501 8.58263351 7.86371207 1.80972131 1.43110579 5.97208734 8.13861139 5.39393668
19997 0.608599804 0.909995359 1.30701396 1.16141839 1.19087999 0.865927878 0.775998256 1.85953123 1.00567972 1.36040182 1.74910303 0.701992928 1.47629807 1.03703968 1.03900607 0.901663175 0.966119717 1.32423378 1.07170699 1.47686645 4.02903282 0.907029698 1.10251654 0.906818921 1.3954855 1.40848419 0.725203072 1.01196386 0.662743046 5.33198049 1.24018097 6.13310077 1.36938349 8.03657978 1.02372788 4.94822877 0.904856708 1.05248311 1.19236526 9.4324226 1.21431961 7.71252446 8.65196326 1.59810873 5.65240318 1.14461327 8.08307925 5.54942645
19998 0.671975637 1.01819619 1.04541894 1.31007955 1.06925033 0.900323963 0.956278482 1.78719952 1.30174568 0.937511504 0.642219142 1.4832748 1.61965706 1.03208094 0.997528021 0.856188644 1.03925172 1.45162295 1.03613905 1.69372531 0.862827476 4.03379855 1.06997511 0.985962653 1.52107345 1.6876677 0.740032567 0.944514364 5.657672 0.596563109 1.20527166 6.39076728 7.93848809 1.38398614 1.05840859 0.921390446 5.08730541 1.15897496 1.39957341 9.671631 7.985792 1.28820486 8.42056317 1.67840191 6.08248737 1.19050922 5.34385969 8.85479236
19999 0.647574831 1.42089138 0.988980567 1.11599984 1.2276441 0.994940473 0.909065939 1.77801378 1.46860902 1.35921315 0.999313796 0.821732995 1.60540848 0.976482005 1.09775938 0.76265545 1.15852864 1.53317243 1.13746767 1.40950533 0.885732326 4.05376803 1.47580248 0.945424269 1.10302355 1.55427687 0.798906647 1.00536268 0.561667404 5.19638584 6.34062069 1.28925732 1.22555655 8.60017749 1.00312422 4.81296568 0.828341598 1.24475428 1.19722737 9.33890163 1.26595366 7.76920714 5.91514791 1.56366249 8.67069511 1.20757628 5.27165199 8.48421026
20000 0.682454313 1.40329196 1.06719088 1.15461173 0.909979547 1.24780416 0.95290591 1.96060517 0.913311788 1.43957084 1.51376625 0.702303221 1.10208145 0.915363059 0.944937993 1.70182377 1.02061679 1.32047736 1.13045645 1.48085474 0.898282987 1.47288641 4.01282401 0.905476889 0.862808301 1.44506408 0.526003815 1.05835514 0.775093172 5.44135888 6.2914095 1.30883642 8.714628 1.25902851 1.10775398 4.54822147 0.801863426 1.16420706 1.25576706 9.22078396 1.3986003 7.60627513 6.11255608 1.66843368 5.18380296 8.63971031 1.55994182 8.05980672
编辑1
我已经阅读了这篇文章。
但是我在griddata步骤中遇到了错误。
也请阅读此https://matplotlib.org/gallery/images_contours_and_fields/irregulardatagrid.html