我有一个Spark数据框,我试图将其推送到AWS Elasticsearch,但是在此之前,我正在测试此示例code代码段以推送到ES,
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('ES_indexer').getOrCreate()
df = spark.createDataFrame([{'num': i} for i in xrange(10)])
df = df.drop('_id')
df.write.format(
'org.elasticsearch.spark.sql'
).option(
'es.nodes', 'http://spark-data-push-adertadaltdpioy124.us-west-2.es.amazonaws.com'
).option(
'es.port', 9200
).option(
'es.resource', '%s/%s' % ('index_name', 'doc_type_name'),
).save()
我收到一条错误消息,
java.lang.ClassNotFoundException:无法找到数据源:org.elasticsearch.spark.sql。请在http://spark.apache.org/third-party-projects.html
中找到软件包任何建议将不胜感激。
错误跟踪:
Traceback (most recent call last):
File "es_3.py", line 12, in <module>
'es.resource', '%s/%s' % ('index_name', 'doc_type_name'),
File "/usr/local/lib/python2.7/site-packages/pyspark/sql/readwriter.py", line 732, in save
self._jwrite.save()
File "/usr/local/lib/python2.7/site-packages/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/local/lib/python2.7/site-packages/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/usr/local/lib/python2.7/site-packages/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o46.save.
: java.lang.ClassNotFoundException: Failed to find data source: org.elasticsearch.spark.sql. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:657)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:245)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: org.elasticsearch.spark.sql.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$20$$anonfun$apply$12.apply(DataSource.scala:634)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$20$$anonfun$apply$12.apply(DataSource.scala:634)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$20.apply(DataSource.scala:634)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$20.apply(DataSource.scala:634)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:634)
... 12 more
答案 0 :(得分:2)
更新:截至2020年6月,当前的ES-hadoop软件包为7.7.1,所以我改用pyspark --packages org.elasticsearch:elasticsearch-hadoop:7.7.1
。
答案 1 :(得分:1)
tl; dr 使用pyspark --packages org.elasticsearch:elasticsearch-hadoop:7.2.0
并使用format("es")
引用连接器。
在Elasticsearch for Apache Hadoop产品的官方文档中引用Installation:
就像其他库一样,elasticsearch-hadoop必须在Spark的类路径中可用。
稍后在Supported Spark SQL versions中:
elasticsearch-hadoop通过两个不同的jar:
支持Spark SQL 1.3-1.6和Spark SQL 2.0。elasticsearch-spark-1.x-<version>.jar
和elasticsearch-hadoop-<version>.jar
elasticsearch-spark-2.0-<version>.jar
支持Spark SQL 2.0
这看起来像是文档的问题(因为它们使用jar文件的两个不同版本),但这确实意味着您必须在Spark应用程序的CLASSPATH上使用正确的jar文件。
后来又在同一document中:
Spark SQL支持在org.elasticsearch.spark.sql软件包下提供。
这只是说(df.write.format('org.elasticsearch.spark.sql')
中的格式是正确的。
进一步document之下,您甚至可以使用别名df.write.format("es")
(!)
我在GitHub上的项目存储库中发现Apache Spark部分更具可读性和最新性。