任何人都可以推荐一种软件包或方法,该软件包或方法将基于已发布的研究参数来模拟李克特(常规)数据和综合量表得分?
如果有可能合并观察到的Cronbach alpha为0.91的奖励积分。
到目前为止,我能做的最好的就是使用fabricatr
并根据this approach的结果宽松地创建休息时间。
library(fabricatr)
library(tidyverse)
survey_data <- fabricate(
N = 245,
Q1 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q2 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q3 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q4 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q5 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q6 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q7 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q8 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q9 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q10 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q11 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q12 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q13 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q14 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q15 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q16 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q17 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q18 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q19 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
Q20 = draw_likert(x = rnorm(N), breaks = c(-Inf, -0.8128, 1.225, 1.294, Inf)),
)
survey_data2 <-
survey_data %>%
mutate_if(is.factor, funs(fct_recode(.,
`0` = "Strongly Disagree",
`1` = "Disagree",
`2` = "Agree",
`3` = "Strongly Agree"))) %>%
mutate_if(is.factor, funs(as.numeric(as.character(.)))) %>%
mutate(total = rowSums(.[2:21])) %>%
summarise(mean = mean(total),
sd = sd(total))
#mean sd
#19.99184 3.593017
SD已关闭。