使用行的前2个和后一个字符串从杂乱的文件中读取和绘制数据图形

时间:2019-07-17 14:06:38

标签: python-3.x matplotlib graph read-data

如果有任何类似的问题和答案,请将其注释掉。到目前为止,浏览后我已经看到了针对Java而不是Python的此类问题。

我正在尝试从凌乱的文件(没有标题)中获取数据,对其进行读取并绘制图形。重要的 #6(用于X轴/名称) # 19(用于Y轴/秒) #23(用于标签)

“秒”列需要除以1000。

数据文件由其他注释混合在一起。但是,我尝试使用图形化的数据中有模式。列之间用空格隔开。它以read seq开头,并以字母abcd结尾。否则,那条线不是我要画的线。

示例图如下所示。

请注意,数据没有模式。对于其余的列,如下所示。我以c2.ac3.z等为例,因此在阅读时比较列比较容易。

bunch of notes here
some data starts with read but does not end with a b c or d.
some of the data starts with read seq but does not end with a b c or d.

There can be empty lines and etc.
But the data itself is as below and has own patter with starts with "read seq" and 
ends with a b c or d
read seq c2.a c3.z c4.h c5.4 17 c7.g c8.g c9.5 c10.2 c11w2 c12k4 c13k7 c14s2 c15.5 c16.52 c17.aa c18.vs 3193.22 c20ag c21gd 1G-b
read seq c2.8 c3bg c4.6 c5.7 15 c7.f c8.d c9.i c10.i c11.t c12.r c13.y c14.h c15ef c16hf c17fg c18as 8640.80 c20da c21df 1G-c
read seq c2fd c3fd c4fd c5hf 1 c7jf c8ds c9vc c10vc c11hg c12.f c13hf c14gh c15po c16ss c17vb c18nv 12145.42 c20fs c21gd 1G-d
read seq c2gd c3dd c4gg c5as 5 c7gf c8jk c9gs c10pu c11zx c12fh c13ry c14.yu c15dg c16fs c17fs c18d 1192.15 c20xx c21gd 10G-a
read seq c2cx c3gd c4jg c5sd 18 c7hg c8kh c9xc c10yt c11xv c12uu c13re c14ur c15dg c16fa c17fs c18vd 12668.22 c20dg c21fs 1G-a
read seq c2cx c3dg c4gj c5df 11 c7jg c8kh c9gg c10re c11hf c12er c13ww c14rd c15df c16ff c17ff c18dv 10822.11 c20gd c21fs 10G-c

bunch of notes here as well.

样本图将如下所示: enter image description here

到目前为止,我有以下内容:

import pandas as pd  

parser = argparse.ArgumentParser()
parser.add_argument('File', help="Enter the file name to graph it | At least one file is required to graph")

args=parser.parse_args()

file = args.file
file_1 = pd.read_csv(file, sep=" ", header=None)

感谢您的帮助。


编辑1: 我编码如下,但出现以下错误:

import pandas as pd
import seaborn as sns

df_dict = pd.read_csv('RESULTS-20190520')

df = pd.DataFrame(df_dict)
# Note that the 'read' and 'seq' values were imported as separate columns. 

# .loc selects rows where the first and second columns are 'read' and 'seq' respectively
# and where the final column has a string pattern ending with a|b|c|d. Note you can change the case argument if desired.
# Finally, we return only columns 6, 19, and 22 since that's all we care about.
df = df.loc[(df[0] == 'read') & (df[1] == 'seq') & df[22].str.match(pat=r'^.*a$|^.*b$|^.*c$|^.*d$', case=False), [6,19,22]]

# Rename vars and manipulate per edits
df['x'] = df[6]
# Divide y-var by 1000
df['y'] = df[19] / 1000 
# Use pandas' str.replace regex functionality to clean string column
df['cat'] = df[22].str.replace(pat=r'(\d+)(\D+)-(.*)', repl=r'\1-\3')

# This should be a lineplot, but as you didn't provide enough sample data, a scatterplot shows the concept. 
sns.lineplot(data=df, x='x', y='y', hue='cat', markers=True)

错误:

Traceback (most recent call last):
  File "C:\...\Python\lib\site-packages\pandas\core\indexes\base.py", line 2657, in get_loc
    return self._engine.get_loc(key)
  File "pandas\_libs\index.pyx", line 108, in pandas._libs.index.IndexEngine.get_loc
  File "pandas\_libs\index.pyx", line 132, in pandas._libs.index.IndexEngine.get_loc
  File "pandas\_libs\hashtable_class_helper.pxi", line 1601, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas\_libs\hashtable_class_helper.pxi", line 1608, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\...\TEST1.py", line 12, in <module>
    df = df.iloc[(df[0] == 'read') & (df[1] == 'seq') & df[22].str.match(pat=r'^.*a$|^.*b$|^.*c$|^.*d$', case=False), [6,19,22]]
  File "C:\...\Python\lib\site-packages\pandas\core\frame.py", line 2927, in __getitem__
    indexer = self.columns.get_loc(key)
  File "C:\...\Python\lib\site-packages\pandas\core\indexes\base.py", line 2659, in get_loc
    return self._engine.get_loc(self._maybe_cast_indexer(key))
  File "pandas\_libs\index.pyx", line 108, in pandas._libs.index.IndexEngine.get_loc
  File "pandas\_libs\index.pyx", line 132, in pandas._libs.index.IndexEngine.get_loc
  File "pandas\_libs\hashtable_class_helper.pxi", line 1601, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas\_libs\hashtable_class_helper.pxi", line 1608, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0

1 个答案:

答案 0 :(得分:1)

从使用pd.read_clipboard(sep='\s', header=None)读取并使用df.to_dict()保存的示例数据开始,这(如果我理解正确的话)似乎是.loc的布尔值条件的相当简单的应用,并且然后进行绘图(此处seaborn是一个不错的选择,因为它提供了方便的hue参数)。

设置

import pandas as pd
import seaborn as sns

df_dict = {0: {0: 'read', 1: 'read', 2: 'read', 3: 'read', 4: 'read', 5: 'read'},
 1: {0: 'seq', 1: 'seq', 2: 'seq', 3: 'seq', 4: 'seq', 5: 'seq'},
 2: {0: 'c2', 1: 'c2', 2: 'c2', 3: 'c2', 4: 'c2', 5: 'c2'},
 3: {0: 'c3', 1: 'c3', 2: 'c3', 3: 'c3', 4: 'c3', 5: 'c3'},
 4: {0: 'c4', 1: 'c4', 2: 'c4', 3: 'c4', 4: 'c4', 5: 'c4'},
 5: {0: 'c5', 1: 'c5', 2: 'c5', 3: 'c5', 4: 'c5', 5: 'c5'},
 6: {0: 17, 1: 15, 2: 1, 3: 5, 4: 18, 5: 11},
 7: {0: 'c7', 1: 'c7', 2: 'c7', 3: 'c7', 4: 'c7', 5: 'c7'},
 8: {0: 'c8', 1: 'c8', 2: 'c8', 3: 'c8', 4: 'c8', 5: 'c8'},
 9: {0: 'c9', 1: 'c9', 2: 'c9', 3: 'c9', 4: 'c9', 5: 'c9'},
 10: {0: 'c10', 1: 'c10', 2: 'c10', 3: 'c10', 4: 'c10', 5: 'c10'},
 11: {0: 'c11', 1: 'c11', 2: 'c11', 3: 'c11', 4: 'c11', 5: 'c11'},
 12: {0: 'c12', 1: 'c12', 2: 'c12', 3: 'c12', 4: 'c12', 5: 'c12'},
 13: {0: 'c13', 1: 'c13', 2: 'c13', 3: 'c13', 4: 'c13', 5: 'c13'},
 14: {0: 'c14', 1: 'c14', 2: 'c14', 3: 'c14', 4: 'c14', 5: 'c14'},
 15: {0: 'c15', 1: 'c15', 2: 'c15', 3: 'c15', 4: 'c15', 5: 'c15'},
 16: {0: 'c16', 1: 'c16', 2: 'c16', 3: 'c16', 4: 'c16', 5: 'c16'},
 17: {0: 'c17', 1: 'c17', 2: 'c17', 3: 'c17', 4: 'c17', 5: 'c17'},
 18: {0: 'c18', 1: 'c18', 2: 'c18', 3: 'c18', 4: 'c18', 5: 'c18'},
 19: {0: 3193.22, 1: 864.8, 2: 1214.42, 3: 1192.15, 4: 1866.22, 5: 2822.11},
 20: {0: 'c20', 1: 'c20', 2: 'c20', 3: 'c20', 4: 'c20', 5: 'c20'},
 21: {0: 'c21', 1: 'c21', 2: 'c21', 3: 'c21', 4: 'c21', 5: 'c21'},
 22: {0: '1G-b', 1: '1G-c', 2: '1G-d', 3: '10G-a', 4: '1G-a', 5: '10G-c'}}

df = pd.DataFrame(df_dict)
# Note that the 'read' and 'seq' values were imported as separate columns. 

使用.loc和.str.match()`过滤记录,然后绘图

# .loc selects rows where the first and second columns are 'read' and 'seq' respectively
# and where the final column has a string pattern ending with a|b|c|d. Note you can change the case argument if desired.
# Finally, we return only columns 6, 19, and 22 since that's all we care about.
df = df.loc[(df[0] == 'read') & (df[1] == 'seq') 
            & df[22].str.match(pat=r'^.*a$|^.*b$|^.*c$|^.*d$', case=False), 
            [6,19,22]]

# Rename vars and manipulate per edits
df['x'] = df[6]
# Divide y-var by 1000
df['y'] = df[19] / 1000 
# Use pandas' str.replace regex functionality to clean string column
df['cat'] = df[22].str.replace(pat=r'(\d+)(\D+)-(.*)', repl=r'\1-\3')

# This should be a lineplot, but as you didn't provide enough sample data, a scatterplot shows the concept. 
sns.scatterplot(data=df, x='x', y='y', hue='cat')

scatter