利用以下数据,我试图计算卡方和Bonferroni的置信区间上下限。列“ Data_No”标识数据集(因为需要针对每个数据集分别进行计算)。
Data_No Area Observed
1 3353 31
1 2297 2
1 1590 15
1 1087 16
1 817 2
1 847 10
1 1014 28
1 872 29
1 1026 29
1 1215 21
2 3353 31
2 2297 2
2 1590 15
3 1087 16
3 817 2
我使用的代码是
library(dplyr)
setwd("F:/GIS/July 2019/")
total_data <- read.csv("test.csv")
result_data <- NULL
for(i in unique(total_data$Data_No)){
data <- total_data[which(total_data$Data_No == i),] data <- data %>%
mutate(RelativeArea = Area/sum(Area), Expected = RelativeArea*sum(Observed), OminusE = Observed-Expected, O2 = OminusE^2, O2divE = O2/Expected, APU = Observed/sum(Observed), Alpha = 0.05/2*count(Data_No),
Zvalue = qnorm(Alpha,lower.tail=FALSE), lower = APU-Zvalue*sqrt(APU*(1-APU)/sum(Observed)), upper = APU+Zvalue*sqrt(APU*(1-APU)/sum(Observed)))
result_data <- rbind(result_data,data) }
write.csv(result_data,file='final_result.csv')
我得到的错误消息是:
UseMethod(“ summarise_”)中的错误:没有适用于 “ summarise_”应用于类“ c('integer','numeric')”的对象
我称为“ Alpha”的列是0.05 / 2k的alpha值,其中K是类别数-在我的示例中,第一个数据集有10个类别(“ Data_No”列),因此“ Alpha”必须为0.05 / 20 = 0.0025,并且其相应的Z值为2.807。第二个数据集在我的示例表(“ Data_No”列)中具有3个类别(因此0.05 / 6),第三个数据集具有2个类别(0.05 / 4),然后使用新计算的“ Alpha”列中的值进行计算ZValue列(Zvalue = qnorm(Alpha,lower.tail=FALSE)
),然后使用它来计算上下置信区间。
答案 0 :(得分:0)
# You need to check the closing bracket for lower c.f. sqrt value. Following code should work.
data <- read.csv("test.csv")
data <- data %>% mutate(RelativeArea =
Area/sum(Area), Expected = RelativeArea*sum(Observed), OminusE =
Observed-Expected, O2 = OminusE^2, O2divE = O2/Expected, APU =
Observed/sum(Observed), lower =
APU-2.394*sqrt(APU*(1-APU)/sum(Observed)), upper =
APU+2.394*sqrt(APU*(1-APU)/sum(Observed)))
#Answer to follow-up question.
#Sample Data
Data_No Area Observed
1 3353 31
1 2297 2
2 1590 15
2 1087 16
#Code to run
total_data <- read.csv("test.csv")
result_data <- NULL
for(i in unique(total_data$Data_No)){
data <- total_data[which(total_data$Data_No == i),]
data <- data %>% mutate(RelativeArea =
Area/sum(Area), Expected = RelativeArea*sum(Observed), OminusE =
Observed-Expected, O2 = OminusE^2, O2divE = O2/Expected, APU =
Observed/sum(Observed), lower =
APU-2.394*sqrt(APU*(1-APU)/sum(Observed)), upper =
APU+2.394*sqrt(APU*(1-APU)/sum(Observed)))
result_data <- rbind(result_data,data)
}
write.csv(result_data,file='final_result.csv')
答案 1 :(得分:0)
#Issue in calculating Alpha. I have updated the code.
library(dplyr)
setwd("F:/GIS/July 2019/")
total_data <- read.csv("test.csv")
result_data <- NULL
for(i in unique(total_data$Data_No)){
data <- total_data[which(total_data$Data_No == i),]
data <- data %>%
mutate(RelativeArea = Area/sum(Area), Expected = RelativeArea*sum(Observed), OminusE = Observed-Expected, O2 = OminusE^2, O2divE = O2/Expected, APU = Observed/sum(Observed), Alpha = 0.05/2*(unique(data$Data_No)),
Zvalue = qnorm(Alpha,lower.tail=FALSE), lower = APU-Zvalue*sqrt(APU*(1-APU)/sum(Observed)), upper = APU+Zvalue*sqrt(APU*(1-APU)/sum(Observed)))
result_data <- rbind(result_data,data) }
write.csv(result_data,file='final_result.csv')