可以说我有这些数据样本:
{
"date": "2019-06-16",
"rank": 150
"name": "doc 1"
}
{
"date": "2019-07-16",
"rank": 100
"name": "doc 1"
}
{
"date": "2019-06-16",
"rank": 50
"name": "doc 2"
}
{
"date": "2019-07-16",
"rank": 80
"name": "doc 2"
}
预期结果是通过从日期不同(旧日期-新日期)的两个相同名称的文档中减去等级字段:
{
"name": "doc 1",
"diff_rank": 50
}
{
"name": "doc 2",
"diff_rank": -30
}
并尽可能按diff_rank
进行排序,否则我将在得到结果后手动进行排序。
我尝试过使用date_histogram
和serial_diff
,但是某些结果缺少了diff_rank
值,因此我确定数据存在:
{
"aggs" : {
"group_by_name": {
"terms": {
"field": "name"
},
"aggs": {
"days": {
"date_histogram": {
"field": "date",
"interval": "day"
},
"aggs": {
"the_rank": {
"sum": {
"field": "rank"
}
},
"diff_rank": {
"serial_diff": {
"buckets_path": "the_rank",
"lag" : 30 // 1 month or 30 days in this case
}
}
}
}
}
}
}
}
非常感谢您提供的帮助来解决我的上述问题!
答案 0 :(得分:0)
最后,我从官方文档中找到了一种使用Filter,Bucket Script聚合和Bucket Sort对结果进行排序的方法。这是最后的代码段:
{
"size": 0,
"aggs" : {
"group_by_name": {
"terms": {
"field": "name",
"size": 50,
"shard_size": 10000
},
"aggs": {
"last_month_rank": {
"filter": {
"term": {"date": "2019-06-17"}
},
"aggs": {
"rank": {
"sum": {
"field": "rank"
}
}
}
},
"latest_rank": {
"filter": {
"term": {"date": "2019-07-17"}
},
"aggs": {
"rank": {
"sum": {
"field": "rank"
}
}
}
},
"diff_rank": {
"bucket_script": {
"buckets_path": {
"lastMonthRank": "last_month_rank>rank",
"latestRank": "latest_rank>rank"
},
"script": "params.lastMonthRank - params.latestRank"
}
},
"rank_bucket_sort": {
"bucket_sort": {
"sort": [
{"diff_rank": {"order": "desc"}}
],
"size": 50
}
}
}
}
}
}