我的数据集df
如下所示。这是一个基于minute
的数据集。
time, Open, High
2017-01-01 00:00:00, 1.2432, 1.1234
2017-01-01 00:01:00, 1.2432, 1.1234
2017-01-01 00:02:00, 1.2332, 1.1234
2017-01-01 00:03:00, 1.2132, 1.1234
...., ...., ....
2017-12-31 23:59:00, 1.2132, 1.1234
我想为rolling mean
列找到每小时的Open
,但是它应该很灵活,以便我也可以为其他列找到每小时的rolling mean
。
我做了什么?
我能够找到如下所示的daily rolling average
:
# Pandas code to find the rolling mean for a single day
df
.assign(1davg=df.rolling(window=1*24*60)['Open'].mean())
.groupby(df['time'].dt.date)
.last()
请注意,将这行代码从{window=1*24*60
更改为window=60
)无效,因为我已经尝试过了。
新的output
应该如下所示:
time, Open, High, Open_hour_avg
2017-01-01 00:00:00, 1.2432, 1.1234, 1.2532
2017-01-01 01:00:00, 1.2432, 1.1234, 1.2632
2017-01-01 02:00:00, 1.2332, 1.1234, 1.2332
2017-01-01 03:00:00, 1.2132, 1.1234, 1.2432
...., ...., ...., ....
2017-12-31 23:00:00, 1.2132, 1.1234, 1.2232
在这里
2017-01-01 00:00:00, 1.2432, 1.1234, 1.2532
是minute
的{{1}}平均值
和midnight
是2017-01-01 01:00:00, 1.2432, 1.1234, 1.2632
的{{1}}平均值
答案 0 :(得分:1)
我们可以做到
df['open_ave_hour']=df.groupby(df.time.dt.strftime('%H:%M:%S')).Open.mean().reindex(df.time.dt.strftime('%H:%M:%S')).to_numpy()
或变换
df['open_ave_hour']=df.groupby(df.time.dt.strftime('%H:%M:%S')).Open.transform('mean')
答案 1 :(得分:0)
这就是我的工作方式:
import pandas as pd
# After your CSV data is in a df
df['time'] = pd.to_datetime(df['time'])
df.index = df['time']
df_mean = df.resample('H').mean()
time, Open High
2017-01-01 00:00:00 1.051488 1.051500
2017-01-01 01:00:00 1.051247 1.051275
2017-01-01 02:00:00 1.051890 1.051957
2017-01-01 03:00:00 1.051225 1.051290
...., ...., ....
2017-12-31 23:00:00 1.051225 1.051290